๐Ÿ“Œ ADP ๋น…๋ฐ์ดํ„ฐ ๋ถ„์„๊ธฐ์‚ฌ ์‹œํ—˜ ๋Œ€๋น„ โ€“ ํ•œ ๊ธ€์ž๋„ ํ‹€๋ฆฌ์ง€ ์•Š๋Š” Python import ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ๋ชฉ๋ก & ์ฒดํฌํฌ์ธํŠธ ๐Ÿš€

tothelightยท2025๋…„ 2์›” 20์ผ
0

โœ… 1. Python ๊ธฐ๋ณธ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ (9๊ฐœ)

from IPython.display import Image  # Jupyter Notebook์—์„œ ์ด๋ฏธ์ง€ ํ‘œ์‹œ
from collections import Counter  # ๋ฆฌ์ŠคํŠธ ์š”์†Œ ๊ฐœ์ˆ˜ ์„ธ๊ธฐ
from datetime import datetime, timedelta  # ๋‚ ์งœ ๋ฐ ์‹œ๊ฐ„ ์ฒ˜๋ฆฌ
from math import ceil  # ์˜ฌ๋ฆผ ํ•จ์ˆ˜ (๋ฐ˜์˜ฌ๋ฆผX, ์˜ฌ๋ฆผ!)
import itertools  # ๋ฐ˜๋ณต์ž(iterators) ์ƒ์„ฑ
import time  # ์‹œ๊ฐ„ ๊ด€๋ จ ํ•จ์ˆ˜ (sleep ๋“ฑ)
import warnings  # ๊ฒฝ๊ณ  ๋ฉ”์‹œ์ง€ ๋ฌด์‹œ ๋˜๋Š” ํ‘œ์‹œ ์„ค์ •
import keyword  # ํŒŒ์ด์ฌ ์˜ˆ์•ฝ์–ด ๋ชฉ๋ก ํ™•์ธ

โœ… 2. ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ๋ฐ ๋ถ„์„ (19๊ฐœ)

import numpy as np  # ๋ฐฐ์—ด ๋ฐ ํ–‰๋ ฌ ์—ฐ์‚ฐ
import pandas as pd  # ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ์กฐ์ž‘
from pandas.plotting import scatter_matrix  # ์‚ฐ์ ๋„ ํ–‰๋ ฌ
from pandas_profiling import ProfileReport  # ์ž๋™ ๋ฐ์ดํ„ฐ ๋ถ„์„ ๋ฆฌํฌํŠธ ์ƒ์„ฑ
import pingouin as pg  # ๊ณ ๊ธ‰ ํ†ต๊ณ„ ๋ถ„์„
from patsy import dmatrices  # R ์Šคํƒ€์ผ ๋ฐ์ดํ„ฐ ๋ณ€ํ™˜
from pmdarima import auto_arima  # ์ตœ์  ARIMA ๋ชจ๋ธ ์„ ํƒ
import scipy  # ๊ณผํ•™ ๊ณ„์‚ฐ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ
from scipy import stats  # ํ†ต๊ณ„ ๋ถ„์„
from scipy.cluster.hierarchy import dendrogram, linkage, fcluster  # ๊ณ„์ธต์  ๊ตฐ์ง‘ ๋ถ„์„
from scipy.stats import chi2_contingency, chisquare, gmean  # ํ†ต๊ณ„ ๊ฒ€์ • ๋ฐ ๊ธฐํ•˜ํ‰๊ท 
from scipy.stats import norm, sem, t, shapiro  # ์ •๊ทœ์„ฑ ๊ฒ€์ • ๋ฐ t-๊ฒ€์ •

โœ… 3. ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” (8๊ฐœ)

import matplotlib.pyplot as plt  # ๊ธฐ๋ณธ ๊ทธ๋ž˜ํ”„ ํ”Œ๋กœํŒ…
from matplotlib import font_manager, rc  # ํฐํŠธ ์„ค์ •
import seaborn as sns  # ๊ณ ๊ธ‰ ์‹œ๊ฐํ™” ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ
import graphviz  # ๋‹ค์ด์–ด๊ทธ๋žจ ๋ฐ ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ
import pydot, pydotplus  # ๋‹ค์ด์–ด๊ทธ๋žจ ์ƒ์„ฑ
import mglearn  # ๋จธ์‹ ๋Ÿฌ๋‹ ์‹œ๊ฐํ™” ๋„๊ตฌ

โœ… 4. ๋จธ์‹ ๋Ÿฌ๋‹ (sklearn) - ์ด 49๊ฐœ

โœ” ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ํ•™์Šต, ํ‰๊ฐ€, ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ

A. ๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (25๊ฐœ)

1๏ธโƒฃ ์•™์ƒ๋ธ” ๋ชจ๋ธ (6๊ฐœ)

from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor  # ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ
from sklearn.ensemble import AdaBoostClassifier, AdaBoostRegressor    # ์–ด๋Œ‘ํ‹ฐ๋ธŒ ๋ถ€์ŠคํŒ…
from sklearn.ensemble import BaggingClassifier, BaggingRegressor      # ๋ฐฐ๊น…

2๏ธโƒฃ ์„ ํ˜• ๋ชจ๋ธ (7๊ฐœ)

from sklearn.linear_model import LinearRegression, LogisticRegression, Ridge  # ์„ ํ˜• ํšŒ๊ท€, ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€, ๋ฆฟ์ง€
from sklearn.linear_model import Lasso, ElasticNet, SGDRegressor, QuantileRegressor  # ๋ผ์˜, ์—˜๋ผ์Šคํ‹ฑ๋„ท, SGD, ๋ถ„์œ„์ˆ˜ ํšŒ๊ท€

3๏ธโƒฃ ํŠธ๋ฆฌ ๋ชจ๋ธ (2๊ฐœ)

from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor  # ๊ฒฐ์ • ํŠธ๋ฆฌ

4๏ธโƒฃ ๋ฒ ์ด์ง€์•ˆ ๋ชจ๋ธ (3๊ฐœ)

from sklearn.naive_bayes import BernoulliNB, GaussianNB, MultinomialNB  # ๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ ๋ชจ๋ธ

5๏ธโƒฃ ๊ตฐ์ง‘ํ™” & ์ฐจ์›์ถ•์†Œ (7๊ฐœ)

from sklearn.cluster import KMeans, DBSCAN  # ๊ตฐ์ง‘ํ™”
from sklearn.decomposition import PCA  # ์ฐจ์›์ถ•์†Œ
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor, NearestNeighbors  # KNN ๋ฐ ์ตœ๊ทผ์ ‘ ์ด์›ƒ ํƒ์ƒ‰

B. ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ & ํ”ผ์ฒ˜ ์—”์ง€๋‹ˆ์–ด๋ง (7๊ฐœ)

from sklearn.preprocessing import LabelEncoder  # ๋ ˆ์ด๋ธ” ์ธ์ฝ”๋”ฉ
from sklearn.preprocessing import MinMaxScaler, StandardScaler, RobustScaler, MaxAbsScaler  # ์Šค์ผ€์ผ๋ง
from sklearn.preprocessing import PolynomialFeatures  # ๋‹คํ•ญ์‹ ๋ณ€ํ™˜
from sklearn.impute import KNNImputer  # KNN ๊ธฐ๋ฐ˜ ๊ฒฐ์ธก์น˜ ์ฒ˜๋ฆฌ

C. ๋ชจ๋ธ ํ‰๊ฐ€ & ๊ฒ€์ฆ (17๊ฐœ)

1๏ธโƒฃ ์„ฑ๋Šฅ ํ‰๊ฐ€ ์ง€ํ‘œ (9๊ฐœ)

from sklearn.metrics import accuracy_score, precision_score, recall_score  # ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ ํ‰๊ฐ€
from sklearn.metrics import f1_score, r2_score, roc_auc_score  # F1์ ์ˆ˜, ๊ฒฐ์ •๊ณ„์ˆ˜(R2), AUC
from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_squared_log_error  # ํšŒ๊ท€ ํ‰๊ฐ€ ์ง€ํ‘œ

2๏ธโƒฃ ํ‰๊ฐ€ ๋„๊ตฌ (4๊ฐœ)

from sklearn.metrics import confusion_matrix, plot_roc_curve, classification_report, calinski_harabasz_score  # ํ‰๊ฐ€ ๋„๊ตฌ

3๏ธโƒฃ ๋ชจ๋ธ ๊ฒ€์ฆ & ์ตœ์ ํ™” (4๊ฐœ)

from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV, KFold  # ๋ฐ์ดํ„ฐ ๋ถ„ํ• , ๊ฒ€์ฆ, ์ตœ์ ํ™”

โœ… 5. ํ†ต๊ณ„ ๋ฐ ๊ฐ€์„ค ๊ฒ€์ • (9๊ฐœ)

import statsmodels.api as sm  # ๊ธฐ๋ณธ API (OLS, GLM ๋“ฑ)
from statsmodels.formula.api import ols, logit  # ์ˆ˜์‹ ๊ธฐ๋ฐ˜ ํšŒ๊ท€ (OLS, ๋กœ์ง€์Šคํ‹ฑ)
from statsmodels.stats.anova import anova_lm  # ANOVA ๋ถ„์„
from statsmodels.stats.multicomp import MultiComparison, pairwise_tukeyhsd  # ๋‹ค์ค‘ ๋น„๊ต ๊ฒ€์ •
from statsmodels.stats.outliers_influence import variance_inflation_factor  # ๋‹ค์ค‘๊ณต์„ ์„ฑ ๋ถ„์„
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf  # ์‹œ๊ณ„์—ด ACF/PACF ํ”Œ๋กฏ

โœ… 6. ์‹œ๊ณ„์—ด ๋ถ„์„ (4๊ฐœ)

from statsmodels.tsa.arima.model import ARIMA  # ARIMA ๋ชจ๋ธ
from statsmodels.tsa.arima_process import ArmaProcess  # ARMA ํ”„๋กœ์„ธ์Šค
from statsmodels.tsa.stattools import adfuller  # ๋‹จ์œ„๊ทผ ๊ฒ€์ • (ADF)
from statsmodels.tsa.seasonal import seasonal_decompose  # ๊ณ„์ ˆ์„ฑ ๋ถ„ํ•ด

โœ… 7. ๋ถ€์ŠคํŒ… ๋ชจ๋ธ (4๊ฐœ)

from xgboost import XGBClassifier, XGBRegressor, plot_importance  # XGBoost ๋ชจ๋ธ
import lightgbm as lgb  # LightGBM ๋ชจ๋ธ

โœ… ๐Ÿ“Š ์ „์ฒด import ๋ฌธ ๊ฐœ์ˆ˜ ์š”์•ฝ

์นดํ…Œ๊ณ ๋ฆฌ๊ฐœ์ˆ˜
Python ๊ธฐ๋ณธ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ9๊ฐœ
๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ๋ฐ ๋ถ„์„19๊ฐœ
๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™”8๊ฐœ
๋จธ์‹ ๋Ÿฌ๋‹ (sklearn)49๊ฐœ
ํ†ต๊ณ„ ๋ฐ ๊ฐ€์„ค ๊ฒ€์ •9๊ฐœ
์‹œ๊ณ„์—ด ๋ถ„์„4๊ฐœ
๋ถ€์ŠคํŒ… ๋ชจ๋ธ4๊ฐœ
์ดํ•ฉโœ… 102๊ฐœ

โœ” ์ด 102๊ฐœ์˜ import ๋ฌธ์ด ์‚ฌ์šฉ๋จ. ๐Ÿš€
โœ” ๊ฐ ์นดํ…Œ๊ณ ๋ฆฌ๋ฅผ ๋‚˜๋ˆ„์–ด ์•”๊ธฐํ•˜๋ฉด ํšจ์œจ์ !
โœ” ์‹œํ—˜ ๋Œ€๋น„ ์‹œ ๊ฐœ์ˆ˜๋ฅผ ์ •ํ™•ํžˆ ๊ธฐ์–ตํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”! โœ…

0๊ฐœ์˜ ๋Œ“๊ธ€