시간복잡도 : 입력값의 변화에 따라 연산을 실행할 때, 연산 횟수에 비해 시간이 얼마만큼 걸리는가?
시간 복잡도를 표기하는 방법은 다음과 같습니다.
이 중에서 Big-O 표기법이 가장 자주 사용된다. 빅오 표기법은 최악의 경우를 고려하므로, 프로그램이 실행되는 과정에서 소요되는 최악의 시간까지 고려할 수 있기 때문이다.
Big-O 표기법은 입력값의 변화에 따라 연산을 실행할 때, 연산 횟수에 비해 시간이 얼마만큼 걸리는가?를 표기하는 방법이다. O(1)는 constant complexity라고 하며, 입력값이 증가하더라도 시간이 늘어나지 않는다.
즉, 출력값을 즉시 얻어낼 수 있다는 의미이다.
// O(1)의 시간 복잡도를 가지는 알고리즘 예시
function O_1_algorithm(arr, index) {
return arr[index];
}
let arr = [1, 2, 3, 4, 5];
let index = 1;
let result = O_1_algorithm(arr, index);
console.log(result); // 2
O(n)은 linear complexity라고 부르며, 입력값이 증가함에 따라 시간 또한 같은 비율로 증가하는 것을 의미한다.
예를 들어 입력값이 1일 때 1초의 시간이 걸리고, 입력값을 100배로 증가시켰을 때 1초의 100배인 100초가 걸리는 알고리즘을 구현했다면, 그 알고리즘은 O(n)의 시간 복잡도를 가진다고 할 수 있다.
function O_n_algorithm(n) {
for (let i = 0; i < n; i++) {
// do something for 1 second
}
}
function another_O_n_algorithm(n) {
for (let i = 0; i < 2n; i++) {
// do something for 1 second
}
}
O_n_algorithm
함수에선 입력값(n)이 1 증가할 때마다 코드의 실행 시간이 1초씩 증가한다. 즉 입력값이 증가함에 따라 같은 비율로 걸리는 시간이 늘어나고 있다. 그렇다면 함수 another_O_n_algorithm
은 어떨까? 입력값이 1 증가할때마다 코드의 실행 시간이 2초씩 증가한다.
이것을 보고, "아! 그렇다면 이 알고리즘은 O(2n) 이라고 표현하겠구나!" 라고 생각할 수 있습니다. 그러나, 사실 이 알고리즘 또한 Big-O 표기법으로는 O(n)으로 표기한다. 입력값이 커지면 커질수록 계수(n 앞에 있는 수)의 의미(영향력)가 점점 퇴색되기 때문에,
같은 비율로 증가하고 있다면 2배가 아닌 5배, 10배로 증가하더라도 O(n)으로 표기한다.!!
O(log n)은 logarithmic complexity라고 부르며 Big-O표기법중 O(1) 다음으로 빠른 시간 복잡도를 가진다.
그 예로 BST(Binary Search Tree)에선 원하는 값을 탐색할 때, 노드를 이동할 때마다 경우의 수가 절반으로 줄어든다.
BST의 값 탐색도 같은 로직으로 O(log n)의 시간 복잡도를 가진 알고리즘(탐색기법)이다.
O(n2)은 quadratic complexity라고 부르며, 입력값이 증가함에 따라 시간이 n의 제곱수의 비율로 증가하는 것을 의미한다.
예를 들어 입력값이 1일 경우 1초가 걸리던 알고리즘에 5라는 값을 주었더니 25초가 걸리게 된다면, 이 알고리즘의 시간 복잡도는 O(n2)라고 표현한다.
// O(n2)의 시간 복잡도를 가지는 알고리즘 예시
function O_quadratic_algorithm(n) {
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) {
// do something for 1 second
}
}
}
function another_O_quadratic_algorithm(n) {
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) {
for (let k = 0; k < n; k++) {
// do something for 1 second
}
}
}
}
2n, 5n 을 모두 O(n)이라고 표현하는 것처럼, n^3과 n^5 도 모두 O(n2)로 표기한다. n이 커지면 커질수록 지수가 주는 영향력이 점점 퇴색되기 때문에 이렇게 표기한다.
O(2n)은 exponential complexity라고 부르며 Big-O 표기법 중 가장 느린 시간 복잡도를 가진다.
종이를 42번 접으면 지구에서 달까지 거리보다 길다 했다. 이처럼
구현한 알고리즘의 시간 복잡도가 O(2n)이라면 다른 접근 방식을 고민해 보는 것이 좋습니다.
// O(2n)의 시간 복잡도를 가지는 알고리즘 예시
function fibonacci(n) {
if (n <= 1) {
return 1;
}
return fibonacci(n - 1) + fibonacci(n - 2);
}
일반적으로 코딩 테스트 문제를 풀 때에는 정확한 값을 제한된 시간 내에 반환하는 프로그램을 작성해야 한다. 그래서 컴파일러 혹은 컴퓨터의 사양에 따라 차이는 있겠지만, 시간제한과 주어진 데이터 크기 제한에 따른 시간 복잡도를 어림잡아 예측해 보는 것은 중요하다.
예를 들어 입력으로 주어지는 데이터에는 n만큼의 크기를 가지는 데이터가 있고, n이 1,000,000보다 작은 수일 때 O(n) 혹은 O(nlogn)의 시간 복잡도를 가지도록 예측하여 프로그램을 작성할 수 있다. 여기서 n²의 시간 복잡도는 예측할 수가 없기 때문이다. n²의 시간 복잡도를 예측할 수 없는 이유는 실제 수를 대입해 계산해보면 유추할 수 있다. 1,000,000²은 즉시 처리하기에 무리가 있는 숫자이다. (1,000,000 * 1,000,000 = 1,000,000,000,000(조)) 그렇기 때문에 시간 복잡도를 줄이려고 노력해야 한다.
그러나 만약 n ≤ 500 으로 입력이 제한된 경우에는 O(n³)의 시간 복잡도를 가질 수 있다고 예측할 수 있다. 예측한 대로 O(n³)의 시간 복잡도를 가지는 프로그램을 작성한다면 문제를 금방 풀 수 있다면, 이때는 굳이 시간 복잡도를 O(log n)까지 줄이기 위해 끙끙댈 필요는 없다.
즉, 입력 데이터가 클 때는 O(n) 혹은 O(log n)의 시간 복잡도를 만족할 수 있도록 예측해서 문제를 풀어야 한다. 그러나 주어진 데이터가 작을 때는 시간 복잡도가 크더라도 문제를 풀어내는 것에 집중하라.
대략적인 데이터 크기에 따른 시간 복잡도는 다음과 같다.