import heapq
queue = []
graph_data = [[2, 'A'], [5, 'B'], [3, 'C']]
for edge in graph_data:
heapq.heappush(queue, edge)
for index in range(len(queue)):
print (heapq.heappop(queue))
print (queue)
[2, 'A']
[3, 'C']
[5, 'B']
[]
import heapq
graph_data = [[2, 'A'], [5, 'B'], [3, 'C']]
heapq.heapify(graph_data)
for index in range(len(graph_data)):
print (heapq.heappop(graph_data))
print (graph_data)
[2, 'A']
[3, 'C']
[5, 'B']
[]
from collections import defaultdict
list_dict = defaultdict(list)
print (list_dict['key1'])
[]
myedges = [
(7, 'A', 'B'), (5, 'A', 'D'),
(8, 'B', 'C'), (9, 'B', 'D'), (7, 'B', 'E'),
(5, 'C', 'E'),
(7, 'D', 'E'), (6, 'D', 'F'),
(8, 'E', 'F'), (9, 'E', 'G'),
(11, 'F', 'G')
]
from collections import defaultdict
from heapq import *
def prim(start_node, edges):
mst = list()
adjacent_edges = defaultdict(list)
for weight, n1, n2 in edges:
adjacent_edges[n1].append((weight, n1, n2))
adjacent_edges[n2].append((weight, n2, n1))
connected_nodes = set(start_node)
candidate_edge_list = adjacent_edges[start_node]
heapify(candidate_edge_list)
while candidate_edge_list:
weight, n1, n2 = heappop(candidate_edge_list)
if n2 not in connected_nodes:
connected_nodes.add(n2)
mst.append((weight, n1, n2))
for edge in adjacent_edges[n2]:
if edge[2] not in connected_nodes:
heappush(candidate_edge_list, edge)
return mst
prim ('A', myedges)
[(5, 'A', 'D'),
(6, 'D', 'F'),
(7, 'A', 'B'),
(7, 'B', 'E'),
(5, 'E', 'C'),
(9, 'E', 'G')]
간선이 아닌 노드를 중심으로 우선순위 큐를 적용하는 방식
개선된 프림 알고리즘 구현시 고려 사항
from heapdict import heapdict
def prim(graph, start):
mst, keys, pi, total_weight = list(), heapdict(), dict(), 0
for node in graph.keys():
keys[node] = float('inf')
pi[node] = None
keys[start], pi[start] = 0, start
while keys:
current_node, current_key = keys.popitem()
mst.append([pi[current_node], current_node, current_key])
total_weight += current_key
for adjacent, weight in mygraph[current_node].items():
if adjacent in keys and weight < keys[adjacent]:
keys[adjacent] = weight
pi[adjacent] = current_node
return mst, total_weight
mygraph = {
'A': {'B': 7, 'D': 5},
'B': {'A': 7, 'D': 9, 'C': 8, 'E': 7},
'C': {'B': 8, 'E': 5},
'D': {'A': 5, 'B': 9, 'E': 7, 'F': 6},
'E': {'B': 7, 'C': 5, 'D': 7, 'F': 8, 'G': 9},
'F': {'D': 6, 'E': 8, 'G': 11},
'G': {'E': 9, 'F': 11}
}
mst, total_weight = prim(mygraph, 'A')
print ('MST:', mst)
print ('Total Weight:', total_weight)
MST: [['A', 'A', 0], ['A', 'D', 5], ['D', 'F', 6], ['A', 'B', 7], ['D', 'E', 7], ['E', 'C', 5], ['E', 'G', 9]]
Total Weight: 39
최초 key 생성 시간 복잡도: $ O(V) $
while 구문과 keys.popitem() 의 시간 복잡도는 $ O(VlogV) $
for 구문의 총 시간 복잡도는 $ O(ElogV) $
일반적인 heap 자료 구조 자체에는 본래 heap 내부의 데이터 우선순위 변경시, 최소 우선순위 데이터를 루트노드로 만들어주는 로직은 없음. 이를 decrease key 로직이라고 부름, 해당 로직은 heapdict 라이브러리를 활용해서 간단히 적용가능
따라서 총 시간 복잡도는 $ O(V + VlogV + ElogV) $ 이며,