표준 정렬 라이브러리는 최악의 경우에도 O(NlogN) 보장
정렬 알고리즘 | 평균 시간 복잡도 | 공간 복잡도 | 특징 |
---|---|---|---|
선택 정렬 | O(N^2) | O(N) | 아이디어가 매우 간단 |
삽입 정렬 | O(N^2) | O(N) | 데이터가 거의 정렬되어 있을 때는 가장 빠름 |
퀵 정렬 | O(NlogN) | O(N) | 대부분의 경우에 가장 적합, 충분히 빠름 |
계수 정렬 | O(N + K) | O(N + K) | 데이터의 크기가 한정되어 있는 경우에만 사용 가능. 매우 빠르게 동작 |
선택 정렬과 기본 정렬 라이브러리 수행 시간 비교
from random import randint
import time
# 배열에 10,000개의 정수를 삽입
array = []
for _ in range(10000):
# 1부터 100 사이의 랜덤한 정수
array.append(randint(1, 100))
# 선택 정렬 프로그램 성능 측정
start_time = time.time()
# 선택 정렬 프로그램 소스코드
for i in range(len(array)):
min_index = i # 가장 작은 원소의 인덱스
for j in range(i + 1, len(array)):
if array[min_index] > arrag[j]:
min_index = j
array[i], array[min_index] = array[min_index], array[i]
# 측정 종료
end_time = time.time()
# 수행 시간 출력
print("선택 정렬 성능 측정:", end_time - start_time)
# 배열을 다시 무작위 데이터로 초기화
array = []
for _ in range(10000):
# 1부터 100 사이의 랜덤한 정수
array.append(randint(1, 100))
# 기본 정렬 라이브러리 성능 측정
start_time = time.time()
# 기본 정렬 라이브러리 사용
array.sort()
# 측정 종료
end_time = time.time()
# 수행 시간 출력
print("기본 정렬 라이브러리 성능 측정:", end_time - start_time)