[python] PyTorch Project Structure 1

김보현·2024년 7월 22일
0

PyTorch

목록 보기
3/7

speedrun 4주차 목표: Make Custom Conv Model

Goal

  • OOP와 모듈의 개념을 통해 프로젝트를 구성
  • PyTorch 사용법과 함께 VSCode와 SSH로 연결
  • 딥러닝 학습을 위한 환경 구축

Overview

Project Template

  • 개발 초기 단계에서는 대화식 개발 과정이 유리하다.
    왜냐하면 학습과정과 디버깅 등 지속적인 확인이 가능하기 때문이다.
    Shift+Enter를 할 때 마다 얻어지는 정보

  • 배포 및 공유 단계에서 어려움이 있다.
    jupyter notebook에서도 DL,ML 기본적인 부분은 잘 되지만 개발과 배포과정으로 연결되는 쉬운 재현의 어려움, 실행순서 꼬임 등의 어려움이 존재한다.

  • DL 코드도 하나의 프로그램이다.
    : 개발 용이성 확보와 유지보수의 향상이 필요하다.

OOP + 모듈
=> 하나의 project 단위로 사용자에게 제공해주어야 한다.

  • 다양한 프로젝트 템플릿이 존재하기 때문에 필요에 따라 수정해서 사용하면 된다.
  • 실행, 데이터, 모델, 설정, 로깅, 지표, 유틸리티 등 다양한 모듈들을 분리하여 프로젝트를 하나의 템플릿화한다.

PyTorch Template 추천 repository
가장 추천 추천1 추천2

Module

pytorch-template/
│
├── train.py - main script to start training
├── test.py - evaluation of trained model
│
├── config.json - holds configuration for training
├── parse_config.py - class to handle config file and cli options
│
├── new_project.py - initialize new project with template files
│
├── base/ - abstract base classes
│   ├── base_data_loader.py
│   ├── base_model.py
│   └── base_trainer.py
│
├── data_loader/ - anything about data loading goes here
│   └── data_loaders.py
│
├── data/ - default directory for storing input data
│
├── model/ - models, losses, and metrics
│   ├── model.py
│   ├── metric.py
│   └── loss.py
│
├── saved/
│   ├── models/ - trained models are saved here
│   └── log/ - default logdir for tensorboard and logging output
│
├── trainer/ - trainers
│   └── trainer.py
│
├── logger/ - module for tensorboard visualization and logging
│   ├── visualization.py
│   ├── logger.py
│   └── logger_config.json
│  
└── utils/ - small utility functions
    ├── util.py
    └── ...

PyTorch 프로젝트를 구성하는 템플릿 예시에서 디렉토리와 파일의 역할

실행

  • train.py: 이 스크립트는 모델 학습을 시작하는 메인 스크립트이다. 데이터 로딩, 모델 초기화, 학습 루프 등이 이곳에 정의된다.
  • test.py: 학습된 모델을 평가하는 스크립트이다. 모델을 로드하고 테스트 데이터셋에서 성능을 평가한다.

설정

  • config.json: 학습에 필요한 설정을 JSON 형식으로 저장하는 파일이다. 학습 파라미터, 경로, 하이퍼파라미터 등이 포함된다.
  • parse_config.py: config.json 파일과 CLI 옵션을 처리하는 클래스를 포함한다. 설정 파일을 파싱하고 커맨드 라인에서 받은 옵션을 처리한다.

base-abstract module

  • base/: 추상 베이스 클래스들을 포함하는 디렉토리이다. 각 파일은 다양한 컴포넌트의 베이스 클래스를 정의한다.
    • base_data_loader.py: 데이터 로더의 베이스 클래스를 정의한다.
    • base_model.py: 모델의 베이스 클래스를 정의한다.
    • base_trainer.py: 트레이너의 베이스 클래스를 정의한다. 실행시켜주는 가장 기본적인 단계, trigger이다.

data

  • data_loader/: 데이터 로딩과 관련된 모든 것을 포함하는 디렉토리이다.

    • data_loaders.py: 데이터 로더 클래스들이 정의되어 있다.
  • data/: 입력 데이터를 저장하는 기본 디렉토리이다.

model-architecture, loss, metric

  • model/: 모델, 손실 함수, 메트릭을 정의하는 디렉토리이다.
    • model.py: 모델 아키텍처가 정의된 파일이다.
    • metric.py: 성능 평가를 위한 메트릭 함수들이 정의된 파일이다.
    • loss.py: 손실 함수들이 정의된 파일이다.

저장소 - 로그, 모델상태

  • saved/: 모델과 로그 파일을 저장하는 디렉토리이다.
    • models/: 학습된 모델이 저장되는 디렉토리이다.
    • log/: 텐서보드와 로그 출력을 위한 기본 로그 디렉토리이다.

학습수행

  • trainer/: 트레이너 클래스를 포함하는 디렉토리이다.
    • trainer.py: 학습 루프와 관련된 로직이 포함된 트레이너 클래스가 정의된 파일이다.

로깅설정

  • logger/: 텐서보드 시각화 및 로깅을 위한 모듈이다.
    • visualization.py: 텐서보드 시각화 기능을 포함한다.
    • logger.py: 로깅 기능을 포함한다.
    • logger_config.json: 로깅 설정을 포함한 JSON 파일이다.

유틸리티

  • utils/: 작은 유틸리티 함수들을 포함하는 디렉토리이다.
    • util.py: 여러 가지 유틸리티 함수들이 정의된 파일이다.

SSH에 git clone



clone 해온 폴더 안에 MyProject를 만들어준다.

code .을 입력하면 새로운 VSCode 창이 뜨면서 코드 구조를 볼 수 있다.

config.json은 여러가지 설정에 들어가있는 정보이다.
python train.py -c config.jsonbash에 입력해주면 다음과 같이 train이 된다.

Train Epoch: 25 [22528/54000 (42%)] Loss: 0.103039
Train Epoch: 25 [23936/54000 (44%)] Loss: 0.033645
Train Epoch: 25 [25344/54000 (47%)] Loss: 0.050302
Train Epoch: 25 [26752/54000 (50%)] Loss: 0.082389
Train Epoch: 25 [28160/54000 (52%)] Loss: 0.121132
Train Epoch: 25 [29568/54000 (55%)] Loss: 0.076809
Train Epoch: 25 [30976/54000 (57%)] Loss: 0.094845
Train Epoch: 25 [32384/54000 (60%)] Loss: 0.064883
Train Epoch: 25 [33792/54000 (63%)] Loss: 0.048803
Train Epoch: 25 [35200/54000 (65%)] Loss: 0.061302
Train Epoch: 25 [36608/54000 (68%)] Loss: 0.131686
Train Epoch: 25 [38016/54000 (70%)] Loss: 0.141702
Train Epoch: 25 [39424/54000 (73%)] Loss: 0.054183
Train Epoch: 25 [40832/54000 (76%)] Loss: 0.119991
Train Epoch: 25 [42240/54000 (78%)] Loss: 0.102565
Train Epoch: 25 [43648/54000 (81%)] Loss: 0.064143
Train Epoch: 25 [45056/54000 (83%)] Loss: 0.049414
Train Epoch: 25 [46464/54000 (86%)] Loss: 0.100502
Train Epoch: 25 [47872/54000 (89%)] Loss: 0.153941
Train Epoch: 25 [49280/54000 (91%)] Loss: 0.097074
Train Epoch: 25 [50688/54000 (94%)] Loss: 0.103645
Train Epoch: 25 [52096/54000 (96%)] Loss: 0.119793
Train Epoch: 25 [53504/54000 (99%)] Loss: 0.093875
    epoch          : 25
    loss           : 0.10751288008580417
    accuracy       : 0.9685595802301963
    top_k_acc      : 0.9964825236966824
    val_loss       : 0.039838541930719736
    val_accuracy   : 0.9886730623100305
    val_top_k_acc  : 0.9991688829787234
Saving checkpoint: saved/models/Mnist_LeNet/0722_140340/checkpoint-epoch25.pth ...
Train Epoch: 26 [0/54000 (0%)] Loss: 0.218775
Train Epoch: 26 [1408/54000 (3%)] Loss: 0.117433
Train Epoch: 26 [2816/54000 (5%)] Loss: 0.107088
Train Epoch: 26 [4224/54000 (8%)] Loss: 0.086084
Train Epoch: 26 [5632/54000 (10%)] Loss: 0.048478
Train Epoch: 26 [7040/54000 (13%)] Loss: 0.124609
Train Epoch: 26 [8448/54000 (16%)] Loss: 0.072788
Train Epoch: 26 [9856/54000 (18%)] Loss: 0.135024
Train Epoch: 26 [11264/54000 (21%)] Loss: 0.077583
Train Epoch: 26 [12672/54000 (23%)] Loss: 0.107356
Train Epoch: 26 [14080/54000 (26%)] Loss: 0.037458
Train Epoch: 26 [15488/54000 (29%)] Loss: 0.044388
Train Epoch: 26 [16896/54000 (31%)] Loss: 0.063734
Train Epoch: 26 [18304/54000 (34%)] Loss: 0.267027
Train Epoch: 26 [19712/54000 (37%)] Loss: 0.128427
Train Epoch: 26 [21120/54000 (39%)] Loss: 0.051455
Train Epoch: 26 [22528/54000 (42%)] Loss: 0.089729
Train Epoch: 26 [23936/54000 (44%)] Loss: 0.123832
Train Epoch: 26 [25344/54000 (47%)] Loss: 0.139797
Train Epoch: 26 [26752/54000 (50%)] Loss: 0.155027
Train Epoch: 26 [28160/54000 (52%)] Loss: 0.043367
Train Epoch: 26 [29568/54000 (55%)] Loss: 0.088288
Train Epoch: 26 [30976/54000 (57%)] Loss: 0.127634
Train Epoch: 26 [32384/54000 (60%)] Loss: 0.090415
Train Epoch: 26 [33792/54000 (63%)] Loss: 0.182064
Train Epoch: 26 [35200/54000 (65%)] Loss: 0.303926
Train Epoch: 26 [36608/54000 (68%)] Loss: 0.143217
Train Epoch: 26 [38016/54000 (70%)] Loss: 0.058583
Train Epoch: 26 [39424/54000 (73%)] Loss: 0.109315
Train Epoch: 26 [40832/54000 (76%)] Loss: 0.116083
Train Epoch: 26 [42240/54000 (78%)] Loss: 0.061569
Train Epoch: 26 [43648/54000 (81%)] Loss: 0.113060
Train Epoch: 26 [45056/54000 (83%)] Loss: 0.073252
Train Epoch: 26 [46464/54000 (86%)] Loss: 0.142844
Train Epoch: 26 [47872/54000 (89%)] Loss: 0.034814
Train Epoch: 26 [49280/54000 (91%)] Loss: 0.137386
Train Epoch: 26 [50688/54000 (94%)] Loss: 0.094655
Train Epoch: 26 [52096/54000 (96%)] Loss: 0.049345
Train Epoch: 26 [53504/54000 (99%)] Loss: 0.071435
    epoch          : 26
    loss           : 0.10394749072296501
    accuracy       : 0.9683559368652673
    top_k_acc      : 0.9966993906567365
    val_loss       : 0.0391211243868964
    val_accuracy   : 0.987295782674772
    val_top_k_acc  : 0.9993113601823709
Saving checkpoint: saved/models/Mnist_LeNet/0722_140340/checkpoint-epoch26.pth ...
Train Epoch: 27 [0/54000 (0%)] Loss: 0.043722
Train Epoch: 27 [1408/54000 (3%)] Loss: 0.081133
Train Epoch: 27 [2816/54000 (5%)] Loss: 0.092307
Train Epoch: 27 [4224/54000 (8%)] Loss: 0.075349
Train Epoch: 27 [5632/54000 (10%)] Loss: 0.049910
Train Epoch: 27 [7040/54000 (13%)] Loss: 0.088892
Train Epoch: 27 [8448/54000 (16%)] Loss: 0.119868
Train Epoch: 27 [9856/54000 (18%)] Loss: 0.039580
Train Epoch: 27 [11264/54000 (21%)] Loss: 0.154280
Train Epoch: 27 [12672/54000 (23%)] Loss: 0.163594
Train Epoch: 27 [14080/54000 (26%)] Loss: 0.091927
Train Epoch: 27 [15488/54000 (29%)] Loss: 0.149581
Train Epoch: 27 [16896/54000 (31%)] Loss: 0.115137
Train Epoch: 27 [18304/54000 (34%)] Loss: 0.166628
Train Epoch: 27 [19712/54000 (37%)] Loss: 0.142237
Train Epoch: 27 [21120/54000 (39%)] Loss: 0.135696
Train Epoch: 27 [22528/54000 (42%)] Loss: 0.238346
Train Epoch: 27 [23936/54000 (44%)] Loss: 0.118776
Train Epoch: 27 [25344/54000 (47%)] Loss: 0.141135
Train Epoch: 27 [26752/54000 (50%)] Loss: 0.094542
Train Epoch: 27 [28160/54000 (52%)] Loss: 0.172510
Train Epoch: 27 [29568/54000 (55%)] Loss: 0.117066
Train Epoch: 27 [30976/54000 (57%)] Loss: 0.071727
Train Epoch: 27 [32384/54000 (60%)] Loss: 0.125582
Train Epoch: 27 [33792/54000 (63%)] Loss: 0.133626
Train Epoch: 27 [35200/54000 (65%)] Loss: 0.077264
Train Epoch: 27 [36608/54000 (68%)] Loss: 0.081816
Train Epoch: 27 [38016/54000 (70%)] Loss: 0.139331
Train Epoch: 27 [39424/54000 (73%)] Loss: 0.066412
Train Epoch: 27 [40832/54000 (76%)] Loss: 0.046289
Train Epoch: 27 [42240/54000 (78%)] Loss: 0.116054
Train Epoch: 27 [43648/54000 (81%)] Loss: 0.106013
Train Epoch: 27 [45056/54000 (83%)] Loss: 0.061179
Train Epoch: 27 [46464/54000 (86%)] Loss: 0.064731
Train Epoch: 27 [47872/54000 (89%)] Loss: 0.139106
Train Epoch: 27 [49280/54000 (91%)] Loss: 0.121178
Train Epoch: 27 [50688/54000 (94%)] Loss: 0.107683
Train Epoch: 27 [52096/54000 (96%)] Loss: 0.062962
Train Epoch: 27 [53504/54000 (99%)] Loss: 0.138280
    epoch          : 27
    loss           : 0.10824207426159162
    accuracy       : 0.9672530890318212
    top_k_acc      : 0.9967787322274881
    val_loss       : 0.03569327680111684
    val_accuracy   : 0.9895041793313071
    val_top_k_acc  : 0.999501329787234
Saving checkpoint: saved/models/Mnist_LeNet/0722_140340/checkpoint-epoch27.pth ...
Saving current best: model_best.pth ...
Train Epoch: 28 [0/54000 (0%)] Loss: 0.071755
Train Epoch: 28 [1408/54000 (3%)] Loss: 0.106848
Train Epoch: 28 [2816/54000 (5%)] Loss: 0.143030
Train Epoch: 28 [4224/54000 (8%)] Loss: 0.076291
Train Epoch: 28 [5632/54000 (10%)] Loss: 0.200063
Train Epoch: 28 [7040/54000 (13%)] Loss: 0.047107
Train Epoch: 28 [8448/54000 (16%)] Loss: 0.116788
Train Epoch: 28 [9856/54000 (18%)] Loss: 0.113519
Train Epoch: 28 [11264/54000 (21%)] Loss: 0.210565
Train Epoch: 28 [12672/54000 (23%)] Loss: 0.060594
Train Epoch: 28 [14080/54000 (26%)] Loss: 0.094577
Train Epoch: 28 [15488/54000 (29%)] Loss: 0.159034
Train Epoch: 28 [16896/54000 (31%)] Loss: 0.080587
Train Epoch: 28 [18304/54000 (34%)] Loss: 0.067869
Train Epoch: 28 [19712/54000 (37%)] Loss: 0.074759
Train Epoch: 28 [21120/54000 (39%)] Loss: 0.141513
Train Epoch: 28 [22528/54000 (42%)] Loss: 0.034767
Train Epoch: 28 [23936/54000 (44%)] Loss: 0.046473
Train Epoch: 28 [25344/54000 (47%)] Loss: 0.132118
Train Epoch: 28 [26752/54000 (50%)] Loss: 0.120770
Train Epoch: 28 [28160/54000 (52%)] Loss: 0.073901
Train Epoch: 28 [29568/54000 (55%)] Loss: 0.099550
Train Epoch: 28 [30976/54000 (57%)] Loss: 0.095251
Train Epoch: 28 [32384/54000 (60%)] Loss: 0.020941
Train Epoch: 28 [33792/54000 (63%)] Loss: 0.175844
Train Epoch: 28 [35200/54000 (65%)] Loss: 0.172745
Train Epoch: 28 [36608/54000 (68%)] Loss: 0.078500
Train Epoch: 28 [38016/54000 (70%)] Loss: 0.223717
Train Epoch: 28 [39424/54000 (73%)] Loss: 0.109596
Train Epoch: 28 [40832/54000 (76%)] Loss: 0.046549
Train Epoch: 28 [42240/54000 (78%)] Loss: 0.185425
Train Epoch: 28 [43648/54000 (81%)] Loss: 0.099566
Train Epoch: 28 [45056/54000 (83%)] Loss: 0.068021
Train Epoch: 28 [46464/54000 (86%)] Loss: 0.108677
Train Epoch: 28 [47872/54000 (89%)] Loss: 0.070779
Train Epoch: 28 [49280/54000 (91%)] Loss: 0.278224
Train Epoch: 28 [50688/54000 (94%)] Loss: 0.125651
Train Epoch: 28 [52096/54000 (96%)] Loss: 0.078666
Train Epoch: 28 [53504/54000 (99%)] Loss: 0.045107
    epoch          : 28
    loss           : 0.10715693555401541
    accuracy       : 0.9690541426878808
    top_k_acc      : 0.9959641587677726
    val_loss       : 0.0385979158888036
    val_accuracy   : 0.9886255699088146
    val_top_k_acc  : 0.999501329787234
Saving checkpoint: saved/models/Mnist_LeNet/0722_140340/checkpoint-epoch28.pth ...
Train Epoch: 29 [0/54000 (0%)] Loss: 0.050837
Train Epoch: 29 [1408/54000 (3%)] Loss: 0.052386
Train Epoch: 29 [2816/54000 (5%)] Loss: 0.061743
Train Epoch: 29 [4224/54000 (8%)] Loss: 0.109275
Train Epoch: 29 [5632/54000 (10%)] Loss: 0.043688
Train Epoch: 29 [7040/54000 (13%)] Loss: 0.298331
Train Epoch: 29 [8448/54000 (16%)] Loss: 0.191068
Train Epoch: 29 [9856/54000 (18%)] Loss: 0.254090
Train Epoch: 29 [11264/54000 (21%)] Loss: 0.086195
Train Epoch: 29 [12672/54000 (23%)] Loss: 0.065042
Train Epoch: 29 [14080/54000 (26%)] Loss: 0.122006
Train Epoch: 29 [15488/54000 (29%)] Loss: 0.108460
Train Epoch: 29 [16896/54000 (31%)] Loss: 0.104013
Train Epoch: 29 [18304/54000 (34%)] Loss: 0.193346
Train Epoch: 29 [19712/54000 (37%)] Loss: 0.054477
Train Epoch: 29 [21120/54000 (39%)] Loss: 0.071246
Train Epoch: 29 [22528/54000 (42%)] Loss: 0.114438
Train Epoch: 29 [23936/54000 (44%)] Loss: 0.136951
Train Epoch: 29 [25344/54000 (47%)] Loss: 0.095295
Train Epoch: 29 [26752/54000 (50%)] Loss: 0.122300
Train Epoch: 29 [28160/54000 (52%)] Loss: 0.056657
Train Epoch: 29 [29568/54000 (55%)] Loss: 0.092282
Train Epoch: 29 [30976/54000 (57%)] Loss: 0.068574
Train Epoch: 29 [32384/54000 (60%)] Loss: 0.074593
Train Epoch: 29 [33792/54000 (63%)] Loss: 0.052283
Train Epoch: 29 [35200/54000 (65%)] Loss: 0.093593
Train Epoch: 29 [36608/54000 (68%)] Loss: 0.054643
Train Epoch: 29 [38016/54000 (70%)] Loss: 0.085734
Train Epoch: 29 [39424/54000 (73%)] Loss: 0.114281
Train Epoch: 29 [40832/54000 (76%)] Loss: 0.121854
Train Epoch: 29 [42240/54000 (78%)] Loss: 0.151349
Train Epoch: 29 [43648/54000 (81%)] Loss: 0.067871
Train Epoch: 29 [45056/54000 (83%)] Loss: 0.057590
Train Epoch: 29 [46464/54000 (86%)] Loss: 0.098205
Train Epoch: 29 [47872/54000 (89%)] Loss: 0.100722
Train Epoch: 29 [49280/54000 (91%)] Loss: 0.053179
Train Epoch: 29 [50688/54000 (94%)] Loss: 0.105573
Train Epoch: 29 [52096/54000 (96%)] Loss: 0.073071
Train Epoch: 29 [53504/54000 (99%)] Loss: 0.107227
    epoch          : 29
    loss           : 0.10552937828304502
    accuracy       : 0.9684273442789438
    top_k_acc      : 0.9965195497630331
    val_loss       : 0.03602355396612845
    val_accuracy   : 0.9891954787234043
    val_top_k_acc  : 0.9996675531914894
Saving checkpoint: saved/models/Mnist_LeNet/0722_140340/checkpoint-epoch29.pth ...
Train Epoch: 30 [0/54000 (0%)] Loss: 0.054464
Train Epoch: 30 [1408/54000 (3%)] Loss: 0.099514
Train Epoch: 30 [2816/54000 (5%)] Loss: 0.118238
Train Epoch: 30 [4224/54000 (8%)] Loss: 0.092277
Train Epoch: 30 [5632/54000 (10%)] Loss: 0.177417
Train Epoch: 30 [7040/54000 (13%)] Loss: 0.087548
Train Epoch: 30 [8448/54000 (16%)] Loss: 0.063869
Train Epoch: 30 [9856/54000 (18%)] Loss: 0.049474
Train Epoch: 30 [11264/54000 (21%)] Loss: 0.150585
Train Epoch: 30 [12672/54000 (23%)] Loss: 0.036277
Train Epoch: 30 [14080/54000 (26%)] Loss: 0.124688
Train Epoch: 30 [15488/54000 (29%)] Loss: 0.083651
Train Epoch: 30 [16896/54000 (31%)] Loss: 0.246006
Train Epoch: 30 [18304/54000 (34%)] Loss: 0.135900
Train Epoch: 30 [19712/54000 (37%)] Loss: 0.068475
Train Epoch: 30 [21120/54000 (39%)] Loss: 0.129598
Train Epoch: 30 [22528/54000 (42%)] Loss: 0.057585
Train Epoch: 30 [23936/54000 (44%)] Loss: 0.081213
Train Epoch: 30 [25344/54000 (47%)] Loss: 0.044985
Train Epoch: 30 [26752/54000 (50%)] Loss: 0.256656
Train Epoch: 30 [28160/54000 (52%)] Loss: 0.172870
Train Epoch: 30 [29568/54000 (55%)] Loss: 0.104113
Train Epoch: 30 [30976/54000 (57%)] Loss: 0.052581
Train Epoch: 30 [32384/54000 (60%)] Loss: 0.042269
Train Epoch: 30 [33792/54000 (63%)] Loss: 0.061408
Train Epoch: 30 [35200/54000 (65%)] Loss: 0.054798
Train Epoch: 30 [36608/54000 (68%)] Loss: 0.072385
Train Epoch: 30 [38016/54000 (70%)] Loss: 0.100783
Train Epoch: 30 [39424/54000 (73%)] Loss: 0.044973
Train Epoch: 30 [40832/54000 (76%)] Loss: 0.054644
Train Epoch: 30 [42240/54000 (78%)] Loss: 0.065359
Train Epoch: 30 [43648/54000 (81%)] Loss: 0.129444
Train Epoch: 30 [45056/54000 (83%)] Loss: 0.104685
Train Epoch: 30 [46464/54000 (86%)] Loss: 0.062659
Train Epoch: 30 [47872/54000 (89%)] Loss: 0.027979
Train Epoch: 30 [49280/54000 (91%)] Loss: 0.103071
Train Epoch: 30 [50688/54000 (94%)] Loss: 0.203892
Train Epoch: 30 [52096/54000 (96%)] Loss: 0.239221
Train Epoch: 30 [53504/54000 (99%)] Loss: 0.086577
    epoch          : 30
    loss           : 0.10546193615272995
    accuracy       : 0.9685331330399459
    top_k_acc      : 0.9965195497630331
    val_loss       : 0.03820485080731042
    val_accuracy   : 0.9881031534954408
    val_top_k_acc  : 0.9996675531914894
Saving checkpoint: saved/models/Mnist_LeNet/0722_140340/checkpoint-epoch30.pth ...
Train Epoch: 31 [0/54000 (0%)] Loss: 0.052466
Train Epoch: 31 [1408/54000 (3%)] Loss: 0.056185
Train Epoch: 31 [2816/54000 (5%)] Loss: 0.106912
Train Epoch: 31 [4224/54000 (8%)] Loss: 0.159254
Train Epoch: 31 [5632/54000 (10%)] Loss: 0.067851
Train Epoch: 31 [7040/54000 (13%)] Loss: 0.079711
Train Epoch: 31 [8448/54000 (16%)] Loss: 0.118263
Train Epoch: 31 [9856/54000 (18%)] Loss: 0.051184
Train Epoch: 31 [11264/54000 (21%)] Loss: 0.051165
Train Epoch: 31 [12672/54000 (23%)] Loss: 0.098457
Train Epoch: 31 [14080/54000 (26%)] Loss: 0.041409
Train Epoch: 31 [15488/54000 (29%)] Loss: 0.121385
Train Epoch: 31 [16896/54000 (31%)] Loss: 0.100809
Train Epoch: 31 [18304/54000 (34%)] Loss: 0.049123
Train Epoch: 31 [19712/54000 (37%)] Loss: 0.117201
Train Epoch: 31 [21120/54000 (39%)] Loss: 0.191368
Train Epoch: 31 [22528/54000 (42%)] Loss: 0.072701
Train Epoch: 31 [23936/54000 (44%)] Loss: 0.036195
Train Epoch: 31 [25344/54000 (47%)] Loss: 0.140016
Train Epoch: 31 [26752/54000 (50%)] Loss: 0.158328
Train Epoch: 31 [28160/54000 (52%)] Loss: 0.074367
Train Epoch: 31 [29568/54000 (55%)] Loss: 0.172158
Train Epoch: 31 [30976/54000 (57%)] Loss: 0.151970
Train Epoch: 31 [32384/54000 (60%)] Loss: 0.075670
Train Epoch: 31 [33792/54000 (63%)] Loss: 0.129229
Train Epoch: 31 [35200/54000 (65%)] Loss: 0.084741
Train Epoch: 31 [36608/54000 (68%)] Loss: 0.164730
Train Epoch: 31 [38016/54000 (70%)] Loss: 0.064563
Train Epoch: 31 [39424/54000 (73%)] Loss: 0.080328
Train Epoch: 31 [40832/54000 (76%)] Loss: 0.041165
Train Epoch: 31 [42240/54000 (78%)] Loss: 0.097039
Train Epoch: 31 [43648/54000 (81%)] Loss: 0.170170
Train Epoch: 31 [45056/54000 (83%)] Loss: 0.146923
Train Epoch: 31 [46464/54000 (86%)] Loss: 0.066074
Train Epoch: 31 [47872/54000 (89%)] Loss: 0.115774
Train Epoch: 31 [49280/54000 (91%)] Loss: 0.196204
Train Epoch: 31 [50688/54000 (94%)] Loss: 0.085860
Train Epoch: 31 [52096/54000 (96%)] Loss: 0.093646
Train Epoch: 31 [53504/54000 (99%)] Loss: 0.071873
    epoch          : 31
    loss           : 0.10108021592668377
    accuracy       : 0.969162576167908
    top_k_acc      : 0.9970167569397428
    val_loss       : 0.03652940404680657
    val_accuracy   : 0.988981762917933
    val_top_k_acc  : 0.9993113601823709
Saving checkpoint: saved/models/Mnist_LeNet/0722_140340/checkpoint-epoch31.pth ...
Train Epoch: 32 [0/54000 (0%)] Loss: 0.073793
Train Epoch: 32 [1408/54000 (3%)] Loss: 0.075022
Train Epoch: 32 [2816/54000 (5%)] Loss: 0.081306
Train Epoch: 32 [4224/54000 (8%)] Loss: 0.090030
Train Epoch: 32 [5632/54000 (10%)] Loss: 0.097269
Train Epoch: 32 [7040/54000 (13%)] Loss: 0.121223
Train Epoch: 32 [8448/54000 (16%)] Loss: 0.062559
Train Epoch: 32 [9856/54000 (18%)] Loss: 0.055144
Train Epoch: 32 [11264/54000 (21%)] Loss: 0.111191
Train Epoch: 32 [12672/54000 (23%)] Loss: 0.070774
Train Epoch: 32 [14080/54000 (26%)] Loss: 0.066266
Train Epoch: 32 [15488/54000 (29%)] Loss: 0.076401
Train Epoch: 32 [16896/54000 (31%)] Loss: 0.088867
Train Epoch: 32 [18304/54000 (34%)] Loss: 0.063385
Train Epoch: 32 [19712/54000 (37%)] Loss: 0.036653
Train Epoch: 32 [21120/54000 (39%)] Loss: 0.189151
Train Epoch: 32 [22528/54000 (42%)] Loss: 0.047996
Train Epoch: 32 [23936/54000 (44%)] Loss: 0.161894
Train Epoch: 32 [25344/54000 (47%)] Loss: 0.083547
Train Epoch: 32 [26752/54000 (50%)] Loss: 0.105474
Train Epoch: 32 [28160/54000 (52%)] Loss: 0.067311
Train Epoch: 32 [29568/54000 (55%)] Loss: 0.163670
Train Epoch: 32 [30976/54000 (57%)] Loss: 0.206910
Train Epoch: 32 [32384/54000 (60%)] Loss: 0.129203
Train Epoch: 32 [33792/54000 (63%)] Loss: 0.101921
Train Epoch: 32 [35200/54000 (65%)] Loss: 0.041896
Train Epoch: 32 [36608/54000 (68%)] Loss: 0.057178
Train Epoch: 32 [38016/54000 (70%)] Loss: 0.098332
Train Epoch: 32 [39424/54000 (73%)] Loss: 0.084896
Train Epoch: 32 [40832/54000 (76%)] Loss: 0.088086
Train Epoch: 32 [42240/54000 (78%)] Loss: 0.063353
Train Epoch: 32 [43648/54000 (81%)] Loss: 0.092034
Train Epoch: 32 [45056/54000 (83%)] Loss: 0.073708
Train Epoch: 32 [46464/54000 (86%)] Loss: 0.078747
Train Epoch: 32 [47872/54000 (89%)] Loss: 0.148245
Train Epoch: 32 [49280/54000 (91%)] Loss: 0.194452
Train Epoch: 32 [50688/54000 (94%)] Loss: 0.143861
Train Epoch: 32 [52096/54000 (96%)] Loss: 0.093417
Train Epoch: 32 [53504/54000 (99%)] Loss: 0.144855
    epoch          : 32
    loss           : 0.09921244060470595
    accuracy       : 0.9695777970548408
    top_k_acc      : 0.9970379146919431
    val_loss       : 0.040284532345236934
    val_accuracy   : 0.9879844224924011
    val_top_k_acc  : 0.9993351063829787
Saving checkpoint: saved/models/Mnist_LeNet/0722_140340/checkpoint-epoch32.pth ...
Train Epoch: 33 [0/54000 (0%)] Loss: 0.117755
Train Epoch: 33 [1408/54000 (3%)] Loss: 0.110634
Train Epoch: 33 [2816/54000 (5%)] Loss: 0.095291
Train Epoch: 33 [4224/54000 (8%)] Loss: 0.045478
Train Epoch: 33 [5632/54000 (10%)] Loss: 0.037266
Train Epoch: 33 [7040/54000 (13%)] Loss: 0.070216
Train Epoch: 33 [8448/54000 (16%)] Loss: 0.128316
Train Epoch: 33 [9856/54000 (18%)] Loss: 0.307018
Train Epoch: 33 [11264/54000 (21%)] Loss: 0.122050
Train Epoch: 33 [12672/54000 (23%)] Loss: 0.049622
Train Epoch: 33 [14080/54000 (26%)] Loss: 0.073194
Train Epoch: 33 [15488/54000 (29%)] Loss: 0.133577
Train Epoch: 33 [16896/54000 (31%)] Loss: 0.130570
Train Epoch: 33 [18304/54000 (34%)] Loss: 0.098172
Train Epoch: 33 [19712/54000 (37%)] Loss: 0.127420
Train Epoch: 33 [21120/54000 (39%)] Loss: 0.188783
Train Epoch: 33 [22528/54000 (42%)] Loss: 0.019224
Train Epoch: 33 [23936/54000 (44%)] Loss: 0.098389
Train Epoch: 33 [25344/54000 (47%)] Loss: 0.091565
Train Epoch: 33 [26752/54000 (50%)] Loss: 0.096791
Train Epoch: 33 [28160/54000 (52%)] Loss: 0.079361
Train Epoch: 33 [29568/54000 (55%)] Loss: 0.157408
Train Epoch: 33 [30976/54000 (57%)] Loss: 0.125078
Train Epoch: 33 [32384/54000 (60%)] Loss: 0.088428
Train Epoch: 33 [33792/54000 (63%)] Loss: 0.090949
Train Epoch: 33 [35200/54000 (65%)] Loss: 0.032975
Train Epoch: 33 [36608/54000 (68%)] Loss: 0.079423
Train Epoch: 33 [38016/54000 (70%)] Loss: 0.124474
Train Epoch: 33 [39424/54000 (73%)] Loss: 0.146168
Train Epoch: 33 [40832/54000 (76%)] Loss: 0.079886
Train Epoch: 33 [42240/54000 (78%)] Loss: 0.122007
Train Epoch: 33 [43648/54000 (81%)] Loss: 0.033792
Train Epoch: 33 [45056/54000 (83%)] Loss: 0.193582
Train Epoch: 33 [46464/54000 (86%)] Loss: 0.087946
Train Epoch: 33 [47872/54000 (89%)] Loss: 0.142977
Train Epoch: 33 [49280/54000 (91%)] Loss: 0.130882
Train Epoch: 33 [50688/54000 (94%)] Loss: 0.131727
Train Epoch: 33 [52096/54000 (96%)] Loss: 0.092733
Train Epoch: 33 [53504/54000 (99%)] Loss: 0.143622
    epoch          : 33
    loss           : 0.10098831835357358
    accuracy       : 0.9699268999661476
    top_k_acc      : 0.9967205484089371
    val_loss       : 0.039045847427258466
    val_accuracy   : 0.9881506458966565
    val_top_k_acc  : 0.9993113601823709
Saving checkpoint: saved/models/Mnist_LeNet/0722_140340/checkpoint-epoch33.pth ...
Train Epoch: 34 [0/54000 (0%)] Loss: 0.056494
Train Epoch: 34 [1408/54000 (3%)] Loss: 0.083461
Train Epoch: 34 [2816/54000 (5%)] Loss: 0.047392
Train Epoch: 34 [4224/54000 (8%)] Loss: 0.079874
Train Epoch: 34 [5632/54000 (10%)] Loss: 0.106087
Train Epoch: 34 [7040/54000 (13%)] Loss: 0.152799
Train Epoch: 34 [8448/54000 (16%)] Loss: 0.102737
Train Epoch: 34 [9856/54000 (18%)] Loss: 0.105465
Train Epoch: 34 [11264/54000 (21%)] Loss: 0.097985
Train Epoch: 34 [12672/54000 (23%)] Loss: 0.049451
Train Epoch: 34 [14080/54000 (26%)] Loss: 0.115870
Train Epoch: 34 [15488/54000 (29%)] Loss: 0.088090
Train Epoch: 34 [16896/54000 (31%)] Loss: 0.077561
Train Epoch: 34 [18304/54000 (34%)] Loss: 0.073033
Train Epoch: 34 [19712/54000 (37%)] Loss: 0.064860
Train Epoch: 34 [21120/54000 (39%)] Loss: 0.110995
Train Epoch: 34 [22528/54000 (42%)] Loss: 0.149479
Train Epoch: 34 [23936/54000 (44%)] Loss: 0.117649
Train Epoch: 34 [25344/54000 (47%)] Loss: 0.172732
Train Epoch: 34 [26752/54000 (50%)] Loss: 0.030049
Train Epoch: 34 [28160/54000 (52%)] Loss: 0.313914
Train Epoch: 34 [29568/54000 (55%)] Loss: 0.070358
Train Epoch: 34 [30976/54000 (57%)] Loss: 0.123293
Train Epoch: 34 [32384/54000 (60%)] Loss: 0.104521
Train Epoch: 34 [33792/54000 (63%)] Loss: 0.109352
Train Epoch: 34 [35200/54000 (65%)] Loss: 0.147304
Train Epoch: 34 [36608/54000 (68%)] Loss: 0.034360
Train Epoch: 34 [38016/54000 (70%)] Loss: 0.097994
Train Epoch: 34 [39424/54000 (73%)] Loss: 0.080687
Train Epoch: 34 [40832/54000 (76%)] Loss: 0.036257
Train Epoch: 34 [42240/54000 (78%)] Loss: 0.093420
Train Epoch: 34 [43648/54000 (81%)] Loss: 0.093650
Train Epoch: 34 [45056/54000 (83%)] Loss: 0.233469
Train Epoch: 34 [46464/54000 (86%)] Loss: 0.135906
Train Epoch: 34 [47872/54000 (89%)] Loss: 0.057028
Train Epoch: 34 [49280/54000 (91%)] Loss: 0.151237
Train Epoch: 34 [50688/54000 (94%)] Loss: 0.139648
Train Epoch: 34 [52096/54000 (96%)] Loss: 0.081431
Train Epoch: 34 [53504/54000 (99%)] Loss: 0.095010
    epoch          : 34
    loss           : 0.096699401038871
    accuracy       : 0.9695910206499662
    top_k_acc      : 0.9970564277251185
    val_loss       : 0.03542699578634285
    val_accuracy   : 0.989480433130699
    val_top_k_acc  : 0.999501329787234
Saving checkpoint: saved/models/Mnist_LeNet/0722_140340/checkpoint-epoch34.pth ...
Saving current best: model_best.pth ...
Train Epoch: 35 [0/54000 (0%)] Loss: 0.046560
Train Epoch: 35 [1408/54000 (3%)] Loss: 0.078715
Train Epoch: 35 [2816/54000 (5%)] Loss: 0.178785
Train Epoch: 35 [4224/54000 (8%)] Loss: 0.040100
Train Epoch: 35 [5632/54000 (10%)] Loss: 0.055796
Train Epoch: 35 [7040/54000 (13%)] Loss: 0.127846
Train Epoch: 35 [8448/54000 (16%)] Loss: 0.088751
Train Epoch: 35 [9856/54000 (18%)] Loss: 0.077539
Train Epoch: 35 [11264/54000 (21%)] Loss: 0.097743
Train Epoch: 35 [12672/54000 (23%)] Loss: 0.137792
Train Epoch: 35 [14080/54000 (26%)] Loss: 0.050837
Train Epoch: 35 [15488/54000 (29%)] Loss: 0.089196
Train Epoch: 35 [16896/54000 (31%)] Loss: 0.110488
Train Epoch: 35 [18304/54000 (34%)] Loss: 0.064262
Train Epoch: 35 [19712/54000 (37%)] Loss: 0.058976
Train Epoch: 35 [21120/54000 (39%)] Loss: 0.102894
Train Epoch: 35 [22528/54000 (42%)] Loss: 0.173581
Train Epoch: 35 [23936/54000 (44%)] Loss: 0.062260
Train Epoch: 35 [25344/54000 (47%)] Loss: 0.283183
Train Epoch: 35 [26752/54000 (50%)] Loss: 0.017184
Train Epoch: 35 [28160/54000 (52%)] Loss: 0.160173
Train Epoch: 35 [29568/54000 (55%)] Loss: 0.116234
Train Epoch: 35 [30976/54000 (57%)] Loss: 0.247975
Train Epoch: 35 [32384/54000 (60%)] Loss: 0.144735
Train Epoch: 35 [33792/54000 (63%)] Loss: 0.073738
Train Epoch: 35 [35200/54000 (65%)] Loss: 0.174284
Train Epoch: 35 [36608/54000 (68%)] Loss: 0.046828
Train Epoch: 35 [38016/54000 (70%)] Loss: 0.156113
Train Epoch: 35 [39424/54000 (73%)] Loss: 0.122556
Train Epoch: 35 [40832/54000 (76%)] Loss: 0.220203
Train Epoch: 35 [42240/54000 (78%)] Loss: 0.042903
Train Epoch: 35 [43648/54000 (81%)] Loss: 0.163590
Train Epoch: 35 [45056/54000 (83%)] Loss: 0.105684
Train Epoch: 35 [46464/54000 (86%)] Loss: 0.092056
Train Epoch: 35 [47872/54000 (89%)] Loss: 0.065153
Train Epoch: 35 [49280/54000 (91%)] Loss: 0.132703
Train Epoch: 35 [50688/54000 (94%)] Loss: 0.065211
Train Epoch: 35 [52096/54000 (96%)] Loss: 0.048604
Train Epoch: 35 [53504/54000 (99%)] Loss: 0.084761
    epoch          : 35
    loss           : 0.09547909004260649
    accuracy       : 0.9699850837846986
    top_k_acc      : 0.9971304798578199
    val_loss       : 0.03338785989437886
    val_accuracy   : 0.9893617021276596
    val_top_k_acc  : 0.999501329787234
Saving checkpoint: saved/models/Mnist_LeNet/0722_140340/checkpoint-epoch35.pth ...
Saving current best: model_best.pth ...
Train Epoch: 36 [0/54000 (0%)] Loss: 0.110239
Train Epoch: 36 [1408/54000 (3%)] Loss: 0.075448
Train Epoch: 36 [2816/54000 (5%)] Loss: 0.081101
Train Epoch: 36 [4224/54000 (8%)] Loss: 0.082518
Train Epoch: 36 [5632/54000 (10%)] Loss: 0.031230
Train Epoch: 36 [7040/54000 (13%)] Loss: 0.093411
Train Epoch: 36 [8448/54000 (16%)] Loss: 0.188358
Train Epoch: 36 [9856/54000 (18%)] Loss: 0.122625
Train Epoch: 36 [11264/54000 (21%)] Loss: 0.051547
Train Epoch: 36 [12672/54000 (23%)] Loss: 0.048227
Train Epoch: 36 [14080/54000 (26%)] Loss: 0.056212
Train Epoch: 36 [15488/54000 (29%)] Loss: 0.137457
Train Epoch: 36 [16896/54000 (31%)] Loss: 0.060233
Train Epoch: 36 [18304/54000 (34%)] Loss: 0.215974
Train Epoch: 36 [19712/54000 (37%)] Loss: 0.062715
Train Epoch: 36 [21120/54000 (39%)] Loss: 0.077740
Train Epoch: 36 [22528/54000 (42%)] Loss: 0.094538
Train Epoch: 36 [23936/54000 (44%)] Loss: 0.109965
Train Epoch: 36 [25344/54000 (47%)] Loss: 0.099188
Train Epoch: 36 [26752/54000 (50%)] Loss: 0.130187
Train Epoch: 36 [28160/54000 (52%)] Loss: 0.071677
Train Epoch: 36 [29568/54000 (55%)] Loss: 0.110488
Train Epoch: 36 [30976/54000 (57%)] Loss: 0.073976
Train Epoch: 36 [32384/54000 (60%)] Loss: 0.070490
Train Epoch: 36 [33792/54000 (63%)] Loss: 0.025605
Train Epoch: 36 [35200/54000 (65%)] Loss: 0.045893
Train Epoch: 36 [36608/54000 (68%)] Loss: 0.210975
Train Epoch: 36 [38016/54000 (70%)] Loss: 0.079554
Train Epoch: 36 [39424/54000 (73%)] Loss: 0.178145
Train Epoch: 36 [40832/54000 (76%)] Loss: 0.048682
Train Epoch: 36 [42240/54000 (78%)] Loss: 0.038427
Train Epoch: 36 [43648/54000 (81%)] Loss: 0.075224
Train Epoch: 36 [45056/54000 (83%)] Loss: 0.083520
Train Epoch: 36 [46464/54000 (86%)] Loss: 0.114444
Train Epoch: 36 [47872/54000 (89%)] Loss: 0.154557
Train Epoch: 36 [49280/54000 (91%)] Loss: 0.083652
Train Epoch: 36 [50688/54000 (94%)] Loss: 0.070300
Train Epoch: 36 [52096/54000 (96%)] Loss: 0.052837
Train Epoch: 36 [53504/54000 (99%)] Loss: 0.095903
    epoch          : 36
    loss           : 0.09915763002895349
    accuracy       : 0.97005384647935
    top_k_acc      : 0.996294748645904
    val_loss       : 0.03534735787035699
    val_accuracy   : 0.9896941489361702
    val_top_k_acc  : 0.9996675531914894
Saving checkpoint: saved/models/Mnist_LeNet/0722_140340/checkpoint-epoch36.pth ...
Train Epoch: 37 [0/54000 (0%)] Loss: 0.113401
Train Epoch: 37 [1408/54000 (3%)] Loss: 0.073089
Train Epoch: 37 [2816/54000 (5%)] Loss: 0.057137
Train Epoch: 37 [4224/54000 (8%)] Loss: 0.055644
Train Epoch: 37 [5632/54000 (10%)] Loss: 0.094710
Train Epoch: 37 [7040/54000 (13%)] Loss: 0.042785
Train Epoch: 37 [8448/54000 (16%)] Loss: 0.101379
Train Epoch: 37 [9856/54000 (18%)] Loss: 0.083550
Train Epoch: 37 [11264/54000 (21%)] Loss: 0.048020
Train Epoch: 37 [12672/54000 (23%)] Loss: 0.078164
Train Epoch: 37 [14080/54000 (26%)] Loss: 0.010478
Train Epoch: 37 [15488/54000 (29%)] Loss: 0.133810
Train Epoch: 37 [16896/54000 (31%)] Loss: 0.142844
Train Epoch: 37 [18304/54000 (34%)] Loss: 0.120372
Train Epoch: 37 [19712/54000 (37%)] Loss: 0.061972
Train Epoch: 37 [21120/54000 (39%)] Loss: 0.219281
Train Epoch: 37 [22528/54000 (42%)] Loss: 0.156751
Train Epoch: 37 [23936/54000 (44%)] Loss: 0.149521
Train Epoch: 37 [25344/54000 (47%)] Loss: 0.083055
Train Epoch: 37 [26752/54000 (50%)] Loss: 0.119881
Train Epoch: 37 [28160/54000 (52%)] Loss: 0.065661
Train Epoch: 37 [29568/54000 (55%)] Loss: 0.052247
Train Epoch: 37 [30976/54000 (57%)] Loss: 0.251952
Train Epoch: 37 [32384/54000 (60%)] Loss: 0.053727
Train Epoch: 37 [33792/54000 (63%)] Loss: 0.054923
Train Epoch: 37 [35200/54000 (65%)] Loss: 0.052056
Train Epoch: 37 [36608/54000 (68%)] Loss: 0.196499
Train Epoch: 37 [38016/54000 (70%)] Loss: 0.097050
Train Epoch: 37 [39424/54000 (73%)] Loss: 0.047460
Train Epoch: 37 [40832/54000 (76%)] Loss: 0.044556
Train Epoch: 37 [42240/54000 (78%)] Loss: 0.043542
Train Epoch: 37 [43648/54000 (81%)] Loss: 0.069742
Train Epoch: 37 [45056/54000 (83%)] Loss: 0.090292
Train Epoch: 37 [46464/54000 (86%)] Loss: 0.084782
Train Epoch: 37 [47872/54000 (89%)] Loss: 0.071240
Train Epoch: 37 [49280/54000 (91%)] Loss: 0.141274
Train Epoch: 37 [50688/54000 (94%)] Loss: 0.148278
Train Epoch: 37 [52096/54000 (96%)] Loss: 0.087012
Train Epoch: 37 [53504/54000 (99%)] Loss: 0.084277
    epoch          : 37
    loss           : 0.094282587656919
    accuracy       : 0.9719130839539608
    top_k_acc      : 0.9971860189573459
    val_loss       : 0.03436503300141107
    val_accuracy   : 0.9886968085106383
    val_top_k_acc  : 0.999501329787234
Saving checkpoint: saved/models/Mnist_LeNet/0722_140340/checkpoint-epoch37.pth ...
Train Epoch: 38 [0/54000 (0%)] Loss: 0.095586
Train Epoch: 38 [1408/54000 (3%)] Loss: 0.096110
Train Epoch: 38 [2816/54000 (5%)] Loss: 0.113169
Train Epoch: 38 [4224/54000 (8%)] Loss: 0.060112
Train Epoch: 38 [5632/54000 (10%)] Loss: 0.073031
Train Epoch: 38 [7040/54000 (13%)] Loss: 0.134203
Train Epoch: 38 [8448/54000 (16%)] Loss: 0.044021
Train Epoch: 38 [9856/54000 (18%)] Loss: 0.076188
Train Epoch: 38 [11264/54000 (21%)] Loss: 0.075099
Train Epoch: 38 [12672/54000 (23%)] Loss: 0.078441
Train Epoch: 38 [14080/54000 (26%)] Loss: 0.047802
Train Epoch: 38 [15488/54000 (29%)] Loss: 0.193711
Train Epoch: 38 [16896/54000 (31%)] Loss: 0.098749
Train Epoch: 38 [18304/54000 (34%)] Loss: 0.071644
Train Epoch: 38 [19712/54000 (37%)] Loss: 0.097200
Train Epoch: 38 [21120/54000 (39%)] Loss: 0.093836
Train Epoch: 38 [22528/54000 (42%)] Loss: 0.059156
Train Epoch: 38 [23936/54000 (44%)] Loss: 0.063883
Train Epoch: 38 [25344/54000 (47%)] Loss: 0.132185
Train Epoch: 38 [26752/54000 (50%)] Loss: 0.107593
Train Epoch: 38 [28160/54000 (52%)] Loss: 0.081784
Train Epoch: 38 [29568/54000 (55%)] Loss: 0.092768
Train Epoch: 38 [30976/54000 (57%)] Loss: 0.122817
Train Epoch: 38 [32384/54000 (60%)] Loss: 0.037802
Train Epoch: 38 [33792/54000 (63%)] Loss: 0.143304
Train Epoch: 38 [35200/54000 (65%)] Loss: 0.118462
Train Epoch: 38 [36608/54000 (68%)] Loss: 0.099895
Train Epoch: 38 [38016/54000 (70%)] Loss: 0.060148
Train Epoch: 38 [39424/54000 (73%)] Loss: 0.087494
Train Epoch: 38 [40832/54000 (76%)] Loss: 0.039721
Train Epoch: 38 [42240/54000 (78%)] Loss: 0.111765
Train Epoch: 38 [43648/54000 (81%)] Loss: 0.141694
Train Epoch: 38 [45056/54000 (83%)] Loss: 0.100822
Train Epoch: 38 [46464/54000 (86%)] Loss: 0.062999
Train Epoch: 38 [47872/54000 (89%)] Loss: 0.066024
Train Epoch: 38 [49280/54000 (91%)] Loss: 0.052156
Train Epoch: 38 [50688/54000 (94%)] Loss: 0.075910
Train Epoch: 38 [52096/54000 (96%)] Loss: 0.098019
Train Epoch: 38 [53504/54000 (99%)] Loss: 0.159874
    epoch          : 38
    loss           : 0.09224229881107383
    accuracy       : 0.971511086662153
    top_k_acc      : 0.9972759394041978
    val_loss       : 0.037849362394673396
    val_accuracy   : 0.9881981382978723
    val_top_k_acc  : 0.999501329787234
Saving checkpoint: saved/models/Mnist_LeNet/0722_140340/checkpoint-epoch38.pth ...
Train Epoch: 39 [0/54000 (0%)] Loss: 0.105865
Train Epoch: 39 [1408/54000 (3%)] Loss: 0.076311
Train Epoch: 39 [2816/54000 (5%)] Loss: 0.077878
Train Epoch: 39 [4224/54000 (8%)] Loss: 0.079575
Train Epoch: 39 [5632/54000 (10%)] Loss: 0.240677
Train Epoch: 39 [7040/54000 (13%)] Loss: 0.072071
Train Epoch: 39 [8448/54000 (16%)] Loss: 0.108262
Train Epoch: 39 [9856/54000 (18%)] Loss: 0.101404
Train Epoch: 39 [11264/54000 (21%)] Loss: 0.157214
Train Epoch: 39 [12672/54000 (23%)] Loss: 0.143480
Train Epoch: 39 [14080/54000 (26%)] Loss: 0.127271
Train Epoch: 39 [15488/54000 (29%)] Loss: 0.132723
Train Epoch: 39 [16896/54000 (31%)] Loss: 0.175200
Train Epoch: 39 [18304/54000 (34%)] Loss: 0.040370
Train Epoch: 39 [19712/54000 (37%)] Loss: 0.241552
Train Epoch: 39 [21120/54000 (39%)] Loss: 0.156019
Train Epoch: 39 [22528/54000 (42%)] Loss: 0.092823
Train Epoch: 39 [23936/54000 (44%)] Loss: 0.121209
Train Epoch: 39 [25344/54000 (47%)] Loss: 0.029556
Train Epoch: 39 [26752/54000 (50%)] Loss: 0.071836
Train Epoch: 39 [28160/54000 (52%)] Loss: 0.065823
Train Epoch: 39 [29568/54000 (55%)] Loss: 0.055397
Train Epoch: 39 [30976/54000 (57%)] Loss: 0.057622
Train Epoch: 39 [32384/54000 (60%)] Loss: 0.089036
Train Epoch: 39 [33792/54000 (63%)] Loss: 0.090861
Train Epoch: 39 [35200/54000 (65%)] Loss: 0.090145
Train Epoch: 39 [36608/54000 (68%)] Loss: 0.075856
Train Epoch: 39 [38016/54000 (70%)] Loss: 0.104519
Train Epoch: 39 [39424/54000 (73%)] Loss: 0.048912
Train Epoch: 39 [40832/54000 (76%)] Loss: 0.086275
Train Epoch: 39 [42240/54000 (78%)] Loss: 0.188685
Train Epoch: 39 [43648/54000 (81%)] Loss: 0.073120
Train Epoch: 39 [45056/54000 (83%)] Loss: 0.057198
Train Epoch: 39 [46464/54000 (86%)] Loss: 0.181167
Train Epoch: 39 [47872/54000 (89%)] Loss: 0.195372
Train Epoch: 39 [49280/54000 (91%)] Loss: 0.059846
Train Epoch: 39 [50688/54000 (94%)] Loss: 0.117176
Train Epoch: 39 [52096/54000 (96%)] Loss: 0.112530
Train Epoch: 39 [53504/54000 (99%)] Loss: 0.152735
    epoch          : 39
    loss           : 0.09774254884800357
    accuracy       : 0.9694640741367637
    top_k_acc      : 0.9970749407582938
    val_loss       : 0.037271874793309796
    val_accuracy   : 0.9891717325227964
    val_top_k_acc  : 0.999501329787234
Saving checkpoint: saved/models/Mnist_LeNet/0722_140340/checkpoint-epoch39.pth ...
Train Epoch: 40 [0/54000 (0%)] Loss: 0.095749
Train Epoch: 40 [1408/54000 (3%)] Loss: 0.088315
Train Epoch: 40 [2816/54000 (5%)] Loss: 0.039181
Train Epoch: 40 [4224/54000 (8%)] Loss: 0.122691
Train Epoch: 40 [5632/54000 (10%)] Loss: 0.214547
Train Epoch: 40 [7040/54000 (13%)] Loss: 0.188205
Train Epoch: 40 [8448/54000 (16%)] Loss: 0.031048
Train Epoch: 40 [9856/54000 (18%)] Loss: 0.059005
Train Epoch: 40 [11264/54000 (21%)] Loss: 0.119043
Train Epoch: 40 [12672/54000 (23%)] Loss: 0.125115
Train Epoch: 40 [14080/54000 (26%)] Loss: 0.100486
Train Epoch: 40 [15488/54000 (29%)] Loss: 0.099731
Train Epoch: 40 [16896/54000 (31%)] Loss: 0.046628
Train Epoch: 40 [18304/54000 (34%)] Loss: 0.061104
Train Epoch: 40 [19712/54000 (37%)] Loss: 0.040261
Train Epoch: 40 [21120/54000 (39%)] Loss: 0.109410
Train Epoch: 40 [22528/54000 (42%)] Loss: 0.104668
Train Epoch: 40 [23936/54000 (44%)] Loss: 0.056437
Train Epoch: 40 [25344/54000 (47%)] Loss: 0.074859
Train Epoch: 40 [26752/54000 (50%)] Loss: 0.102933
Train Epoch: 40 [28160/54000 (52%)] Loss: 0.094249
Train Epoch: 40 [29568/54000 (55%)] Loss: 0.082338
Train Epoch: 40 [30976/54000 (57%)] Loss: 0.105324
Train Epoch: 40 [32384/54000 (60%)] Loss: 0.088742
Train Epoch: 40 [33792/54000 (63%)] Loss: 0.104970
Train Epoch: 40 [35200/54000 (65%)] Loss: 0.018139
Train Epoch: 40 [36608/54000 (68%)] Loss: 0.057882
Train Epoch: 40 [38016/54000 (70%)] Loss: 0.067422
Train Epoch: 40 [39424/54000 (73%)] Loss: 0.114176
Train Epoch: 40 [40832/54000 (76%)] Loss: 0.137629
Train Epoch: 40 [42240/54000 (78%)] Loss: 0.064013
Train Epoch: 40 [43648/54000 (81%)] Loss: 0.055192
Train Epoch: 40 [45056/54000 (83%)] Loss: 0.106789
Train Epoch: 40 [46464/54000 (86%)] Loss: 0.072675
Train Epoch: 40 [47872/54000 (89%)] Loss: 0.088665
Train Epoch: 40 [49280/54000 (91%)] Loss: 0.079876
Train Epoch: 40 [50688/54000 (94%)] Loss: 0.049924
Train Epoch: 40 [52096/54000 (96%)] Loss: 0.055446
Train Epoch: 40 [53504/54000 (99%)] Loss: 0.048518
    epoch          : 40
    loss           : 0.09170501060360134
    accuracy       : 0.9719712677725119
    top_k_acc      : 0.9970167569397428
    val_loss       : 0.03763717375175552
    val_accuracy   : 0.9895041793313071
    val_top_k_acc  : 0.9993113601823709
Saving checkpoint: saved/models/Mnist_LeNet/0722_140340/checkpoint-epoch40.pth ...
Train Epoch: 41 [0/54000 (0%)] Loss: 0.061825
Train Epoch: 41 [1408/54000 (3%)] Loss: 0.044266
Train Epoch: 41 [2816/54000 (5%)] Loss: 0.089720
Train Epoch: 41 [4224/54000 (8%)] Loss: 0.100966
Train Epoch: 41 [5632/54000 (10%)] Loss: 0.037384
Train Epoch: 41 [7040/54000 (13%)] Loss: 0.119024
Train Epoch: 41 [8448/54000 (16%)] Loss: 0.082317
Train Epoch: 41 [9856/54000 (18%)] Loss: 0.113641
Train Epoch: 41 [11264/54000 (21%)] Loss: 0.077739
Train Epoch: 41 [12672/54000 (23%)] Loss: 0.044483
Train Epoch: 41 [14080/54000 (26%)] Loss: 0.114967
Train Epoch: 41 [15488/54000 (29%)] Loss: 0.057102
Train Epoch: 41 [16896/54000 (31%)] Loss: 0.053922
Train Epoch: 41 [18304/54000 (34%)] Loss: 0.072728
Train Epoch: 41 [19712/54000 (37%)] Loss: 0.104610
Train Epoch: 41 [21120/54000 (39%)] Loss: 0.050922
Train Epoch: 41 [22528/54000 (42%)] Loss: 0.062473
Train Epoch: 41 [23936/54000 (44%)] Loss: 0.077329
Train Epoch: 41 [25344/54000 (47%)] Loss: 0.062833
Train Epoch: 41 [26752/54000 (50%)] Loss: 0.055186
Train Epoch: 41 [28160/54000 (52%)] Loss: 0.110490
Train Epoch: 41 [29568/54000 (55%)] Loss: 0.166576
Train Epoch: 41 [30976/54000 (57%)] Loss: 0.062634
Train Epoch: 41 [32384/54000 (60%)] Loss: 0.217256
Train Epoch: 41 [33792/54000 (63%)] Loss: 0.065789
Train Epoch: 41 [35200/54000 (65%)] Loss: 0.200196
Train Epoch: 41 [36608/54000 (68%)] Loss: 0.090136
Train Epoch: 41 [38016/54000 (70%)] Loss: 0.022803
Train Epoch: 41 [39424/54000 (73%)] Loss: 0.228338
Train Epoch: 41 [40832/54000 (76%)] Loss: 0.064105
Train Epoch: 41 [42240/54000 (78%)] Loss: 0.119741
Train Epoch: 41 [43648/54000 (81%)] Loss: 0.061061
Train Epoch: 41 [45056/54000 (83%)] Loss: 0.068955
Train Epoch: 41 [46464/54000 (86%)] Loss: 0.073667
Train Epoch: 41 [47872/54000 (89%)] Loss: 0.034911
Train Epoch: 41 [49280/54000 (91%)] Loss: 0.134841
Train Epoch: 41 [50688/54000 (94%)] Loss: 0.077341
Train Epoch: 41 [52096/54000 (96%)] Loss: 0.084659
Train Epoch: 41 [53504/54000 (99%)] Loss: 0.092938
    epoch          : 41
    loss           : 0.09513737439173517
    accuracy       : 0.9714158767772512
    top_k_acc      : 0.9972785841232228
    val_loss       : 0.03414595234604116
    val_accuracy   : 0.9895041793313071
    val_top_k_acc  : 0.9991688829787234
Saving checkpoint: saved/models/Mnist_LeNet/0722_140340/checkpoint-epoch41.pth ...
Train Epoch: 42 [0/54000 (0%)] Loss: 0.066176
Train Epoch: 42 [1408/54000 (3%)] Loss: 0.117279
Train Epoch: 42 [2816/54000 (5%)] Loss: 0.020643
Train Epoch: 42 [4224/54000 (8%)] Loss: 0.028539
Train Epoch: 42 [5632/54000 (10%)] Loss: 0.135024
Train Epoch: 42 [7040/54000 (13%)] Loss: 0.058305
Train Epoch: 42 [8448/54000 (16%)] Loss: 0.102245
Train Epoch: 42 [9856/54000 (18%)] Loss: 0.058667
Train Epoch: 42 [11264/54000 (21%)] Loss: 0.067023
Train Epoch: 42 [12672/54000 (23%)] Loss: 0.049085
Train Epoch: 42 [14080/54000 (26%)] Loss: 0.059053
Train Epoch: 42 [15488/54000 (29%)] Loss: 0.101788
Train Epoch: 42 [16896/54000 (31%)] Loss: 0.044484
Train Epoch: 42 [18304/54000 (34%)] Loss: 0.073212
Train Epoch: 42 [19712/54000 (37%)] Loss: 0.081177
Train Epoch: 42 [21120/54000 (39%)] Loss: 0.142055
Train Epoch: 42 [22528/54000 (42%)] Loss: 0.033987
Train Epoch: 42 [23936/54000 (44%)] Loss: 0.188416
Train Epoch: 42 [25344/54000 (47%)] Loss: 0.093068
Train Epoch: 42 [26752/54000 (50%)] Loss: 0.066327
Train Epoch: 42 [28160/54000 (52%)] Loss: 0.053093
Train Epoch: 42 [29568/54000 (55%)] Loss: 0.082052
Train Epoch: 42 [30976/54000 (57%)] Loss: 0.056879
Train Epoch: 42 [32384/54000 (60%)] Loss: 0.094709
Train Epoch: 42 [33792/54000 (63%)] Loss: 0.053719
Train Epoch: 42 [35200/54000 (65%)] Loss: 0.123268
Train Epoch: 42 [36608/54000 (68%)] Loss: 0.118055
Train Epoch: 42 [38016/54000 (70%)] Loss: 0.068082
Train Epoch: 42 [39424/54000 (73%)] Loss: 0.062378
Train Epoch: 42 [40832/54000 (76%)] Loss: 0.043081
Train Epoch: 42 [42240/54000 (78%)] Loss: 0.053650
Train Epoch: 42 [43648/54000 (81%)] Loss: 0.014749
Train Epoch: 42 [45056/54000 (83%)] Loss: 0.099568
Train Epoch: 42 [46464/54000 (86%)] Loss: 0.114451
Train Epoch: 42 [47872/54000 (89%)] Loss: 0.071772
Train Epoch: 42 [49280/54000 (91%)] Loss: 0.131080
Train Epoch: 42 [50688/54000 (94%)] Loss: 0.144976
Train Epoch: 42 [52096/54000 (96%)] Loss: 0.139204
Train Epoch: 42 [53504/54000 (99%)] Loss: 0.051051
    epoch          : 42
    loss           : 0.09541039523929004
    accuracy       : 0.9715692704807042
    top_k_acc      : 0.9971833742383209
    val_loss       : 0.03534220296275267
    val_accuracy   : 0.988530585106383
    val_top_k_acc  : 0.999501329787234
Saving checkpoint: saved/models/Mnist_LeNet/0722_140340/checkpoint-epoch42.pth ...
Train Epoch: 43 [0/54000 (0%)] Loss: 0.068082
Train Epoch: 43 [1408/54000 (3%)] Loss: 0.190127
Train Epoch: 43 [2816/54000 (5%)] Loss: 0.065486
Train Epoch: 43 [4224/54000 (8%)] Loss: 0.042941
Train Epoch: 43 [5632/54000 (10%)] Loss: 0.075803
Train Epoch: 43 [7040/54000 (13%)] Loss: 0.094999
Train Epoch: 43 [8448/54000 (16%)] Loss: 0.051589
Train Epoch: 43 [9856/54000 (18%)] Loss: 0.150701
Train Epoch: 43 [11264/54000 (21%)] Loss: 0.110641
Train Epoch: 43 [12672/54000 (23%)] Loss: 0.055810
Train Epoch: 43 [14080/54000 (26%)] Loss: 0.111280
Train Epoch: 43 [15488/54000 (29%)] Loss: 0.057315
Train Epoch: 43 [16896/54000 (31%)] Loss: 0.025387
Train Epoch: 43 [18304/54000 (34%)] Loss: 0.105587
Train Epoch: 43 [19712/54000 (37%)] Loss: 0.068636
Train Epoch: 43 [21120/54000 (39%)] Loss: 0.098570
Train Epoch: 43 [22528/54000 (42%)] Loss: 0.072477
Train Epoch: 43 [23936/54000 (44%)] Loss: 0.062320
Train Epoch: 43 [25344/54000 (47%)] Loss: 0.109872
Train Epoch: 43 [26752/54000 (50%)] Loss: 0.073085
Train Epoch: 43 [28160/54000 (52%)] Loss: 0.151497
Train Epoch: 43 [29568/54000 (55%)] Loss: 0.066213
Train Epoch: 43 [30976/54000 (57%)] Loss: 0.063629
Train Epoch: 43 [32384/54000 (60%)] Loss: 0.035868
Train Epoch: 43 [33792/54000 (63%)] Loss: 0.069645
Train Epoch: 43 [35200/54000 (65%)] Loss: 0.061967
Train Epoch: 43 [36608/54000 (68%)] Loss: 0.050763
Train Epoch: 43 [38016/54000 (70%)] Loss: 0.223181
Train Epoch: 43 [39424/54000 (73%)] Loss: 0.042183
Train Epoch: 43 [40832/54000 (76%)] Loss: 0.067208
Train Epoch: 43 [42240/54000 (78%)] Loss: 0.062035
Train Epoch: 43 [43648/54000 (81%)] Loss: 0.046409
Train Epoch: 43 [45056/54000 (83%)] Loss: 0.047210
Train Epoch: 43 [46464/54000 (86%)] Loss: 0.079769
Train Epoch: 43 [47872/54000 (89%)] Loss: 0.070106
Train Epoch: 43 [49280/54000 (91%)] Loss: 0.080252
Train Epoch: 43 [50688/54000 (94%)] Loss: 0.083506
Train Epoch: 43 [52096/54000 (96%)] Loss: 0.067707
Train Epoch: 43 [53504/54000 (99%)] Loss: 0.138547
    epoch          : 43
    loss           : 0.09548878068351561
    accuracy       : 0.9708551963439404
    top_k_acc      : 0.9970008886255924
    val_loss       : 0.03404288316155447
    val_accuracy   : 0.9881743920972644
    val_top_k_acc  : 0.9996675531914894
Saving checkpoint: saved/models/Mnist_LeNet/0722_140340/checkpoint-epoch43.pth ...
Train Epoch: 44 [0/54000 (0%)] Loss: 0.131017
Train Epoch: 44 [1408/54000 (3%)] Loss: 0.078258
Train Epoch: 44 [2816/54000 (5%)] Loss: 0.154805
Train Epoch: 44 [4224/54000 (8%)] Loss: 0.076135
Train Epoch: 44 [5632/54000 (10%)] Loss: 0.082712
Train Epoch: 44 [7040/54000 (13%)] Loss: 0.137805
Train Epoch: 44 [8448/54000 (16%)] Loss: 0.085491
Train Epoch: 44 [9856/54000 (18%)] Loss: 0.079081
Train Epoch: 44 [11264/54000 (21%)] Loss: 0.042557
Train Epoch: 44 [12672/54000 (23%)] Loss: 0.097801
Train Epoch: 44 [14080/54000 (26%)] Loss: 0.074342
Train Epoch: 44 [15488/54000 (29%)] Loss: 0.125782
Train Epoch: 44 [16896/54000 (31%)] Loss: 0.086053
Train Epoch: 44 [18304/54000 (34%)] Loss: 0.176826
Train Epoch: 44 [19712/54000 (37%)] Loss: 0.111103
Train Epoch: 44 [21120/54000 (39%)] Loss: 0.060495
Train Epoch: 44 [22528/54000 (42%)] Loss: 0.086681
Train Epoch: 44 [23936/54000 (44%)] Loss: 0.066704
Train Epoch: 44 [25344/54000 (47%)] Loss: 0.092749
Train Epoch: 44 [26752/54000 (50%)] Loss: 0.125641
Train Epoch: 44 [28160/54000 (52%)] Loss: 0.089998
Train Epoch: 44 [29568/54000 (55%)] Loss: 0.077707
Train Epoch: 44 [30976/54000 (57%)] Loss: 0.054595
Train Epoch: 44 [32384/54000 (60%)] Loss: 0.072519
Train Epoch: 44 [33792/54000 (63%)] Loss: 0.159096
Train Epoch: 44 [35200/54000 (65%)] Loss: 0.064343
Train Epoch: 44 [36608/54000 (68%)] Loss: 0.119838
Train Epoch: 44 [38016/54000 (70%)] Loss: 0.065946
Train Epoch: 44 [39424/54000 (73%)] Loss: 0.083013
Train Epoch: 44 [40832/54000 (76%)] Loss: 0.115742
Train Epoch: 44 [42240/54000 (78%)] Loss: 0.074582
Train Epoch: 44 [43648/54000 (81%)] Loss: 0.082750
Train Epoch: 44 [45056/54000 (83%)] Loss: 0.083419
Train Epoch: 44 [46464/54000 (86%)] Loss: 0.066069
Train Epoch: 44 [47872/54000 (89%)] Loss: 0.043860
Train Epoch: 44 [49280/54000 (91%)] Loss: 0.066436
Train Epoch: 44 [50688/54000 (94%)] Loss: 0.041764
Train Epoch: 44 [52096/54000 (96%)] Loss: 0.099018
Train Epoch: 44 [53504/54000 (99%)] Loss: 0.030515
    epoch          : 44
    loss           : 0.09303460593039603
    accuracy       : 0.9727990648273527
    top_k_acc      : 0.9971675059241706
    val_loss       : 0.03665727877276058
    val_accuracy   : 0.9886968085106383
    val_top_k_acc  : 0.9993351063829787
Saving checkpoint: saved/models/Mnist_LeNet/0722_140340/checkpoint-epoch44.pth ...
Train Epoch: 45 [0/54000 (0%)] Loss: 0.064786
Train Epoch: 45 [1408/54000 (3%)] Loss: 0.138503
Train Epoch: 45 [2816/54000 (5%)] Loss: 0.068605
Train Epoch: 45 [4224/54000 (8%)] Loss: 0.063553
Train Epoch: 45 [5632/54000 (10%)] Loss: 0.101821
Train Epoch: 45 [7040/54000 (13%)] Loss: 0.056002
Train Epoch: 45 [8448/54000 (16%)] Loss: 0.169862
Train Epoch: 45 [9856/54000 (18%)] Loss: 0.134792
Train Epoch: 45 [11264/54000 (21%)] Loss: 0.091166
Train Epoch: 45 [12672/54000 (23%)] Loss: 0.049179
Train Epoch: 45 [14080/54000 (26%)] Loss: 0.095279
Train Epoch: 45 [15488/54000 (29%)] Loss: 0.145587
Train Epoch: 45 [16896/54000 (31%)] Loss: 0.089605
Train Epoch: 45 [18304/54000 (34%)] Loss: 0.071702
Train Epoch: 45 [19712/54000 (37%)] Loss: 0.064612
Train Epoch: 45 [21120/54000 (39%)] Loss: 0.091519
Train Epoch: 45 [22528/54000 (42%)] Loss: 0.101064
Train Epoch: 45 [23936/54000 (44%)] Loss: 0.177253
Train Epoch: 45 [25344/54000 (47%)] Loss: 0.138424
Train Epoch: 45 [26752/54000 (50%)] Loss: 0.171499
Train Epoch: 45 [28160/54000 (52%)] Loss: 0.074019
Train Epoch: 45 [29568/54000 (55%)] Loss: 0.052505
Train Epoch: 45 [30976/54000 (57%)] Loss: 0.203400
Train Epoch: 45 [32384/54000 (60%)] Loss: 0.139977
Train Epoch: 45 [33792/54000 (63%)] Loss: 0.037859
Train Epoch: 45 [35200/54000 (65%)] Loss: 0.054618
Train Epoch: 45 [36608/54000 (68%)] Loss: 0.063929
Train Epoch: 45 [38016/54000 (70%)] Loss: 0.092166
Train Epoch: 45 [39424/54000 (73%)] Loss: 0.085069
Train Epoch: 45 [40832/54000 (76%)] Loss: 0.052635
Train Epoch: 45 [42240/54000 (78%)] Loss: 0.122251
Train Epoch: 45 [43648/54000 (81%)] Loss: 0.096386
Train Epoch: 45 [45056/54000 (83%)] Loss: 0.037219
Train Epoch: 45 [46464/54000 (86%)] Loss: 0.108541
Train Epoch: 45 [47872/54000 (89%)] Loss: 0.041960
Train Epoch: 45 [49280/54000 (91%)] Loss: 0.140661
Train Epoch: 45 [50688/54000 (94%)] Loss: 0.158312
Train Epoch: 45 [52096/54000 (96%)] Loss: 0.131670
Train Epoch: 45 [53504/54000 (99%)] Loss: 0.116118
    epoch          : 45
    loss           : 0.09171031364703207
    accuracy       : 0.9716486120514556
    top_k_acc      : 0.9972600710900474
    val_loss       : 0.03569985168213223
    val_accuracy   : 0.9893617021276596
    val_top_k_acc  : 0.9991688829787234
Saving checkpoint: saved/models/Mnist_LeNet/0722_140340/checkpoint-epoch45.pth ...
Train Epoch: 46 [0/54000 (0%)] Loss: 0.035129
Train Epoch: 46 [1408/54000 (3%)] Loss: 0.060531
Train Epoch: 46 [2816/54000 (5%)] Loss: 0.141322
Train Epoch: 46 [4224/54000 (8%)] Loss: 0.045136
Train Epoch: 46 [5632/54000 (10%)] Loss: 0.111405
Train Epoch: 46 [7040/54000 (13%)] Loss: 0.030723
Train Epoch: 46 [8448/54000 (16%)] Loss: 0.136971
Train Epoch: 46 [9856/54000 (18%)] Loss: 0.135877
Train Epoch: 46 [11264/54000 (21%)] Loss: 0.198417
Train Epoch: 46 [12672/54000 (23%)] Loss: 0.107843
Train Epoch: 46 [14080/54000 (26%)] Loss: 0.030834
Train Epoch: 46 [15488/54000 (29%)] Loss: 0.162332
Train Epoch: 46 [16896/54000 (31%)] Loss: 0.098182
Train Epoch: 46 [18304/54000 (34%)] Loss: 0.085969
Train Epoch: 46 [19712/54000 (37%)] Loss: 0.128704
Train Epoch: 46 [21120/54000 (39%)] Loss: 0.034047
Train Epoch: 46 [22528/54000 (42%)] Loss: 0.095470
Train Epoch: 46 [23936/54000 (44%)] Loss: 0.082977
Train Epoch: 46 [25344/54000 (47%)] Loss: 0.168601
Train Epoch: 46 [26752/54000 (50%)] Loss: 0.037510
Train Epoch: 46 [28160/54000 (52%)] Loss: 0.092670
Train Epoch: 46 [29568/54000 (55%)] Loss: 0.054018
Train Epoch: 46 [30976/54000 (57%)] Loss: 0.098995
Train Epoch: 46 [32384/54000 (60%)] Loss: 0.062006
Train Epoch: 46 [33792/54000 (63%)] Loss: 0.075248
Train Epoch: 46 [35200/54000 (65%)] Loss: 0.086751
Train Epoch: 46 [36608/54000 (68%)] Loss: 0.073657
Train Epoch: 46 [38016/54000 (70%)] Loss: 0.067035
Train Epoch: 46 [39424/54000 (73%)] Loss: 0.136418
Train Epoch: 46 [40832/54000 (76%)] Loss: 0.134104
Train Epoch: 46 [42240/54000 (78%)] Loss: 0.122963
Train Epoch: 46 [43648/54000 (81%)] Loss: 0.122107
Train Epoch: 46 [45056/54000 (83%)] Loss: 0.237209
Train Epoch: 46 [46464/54000 (86%)] Loss: 0.062584
Train Epoch: 46 [47872/54000 (89%)] Loss: 0.077283
Train Epoch: 46 [49280/54000 (91%)] Loss: 0.139206
Train Epoch: 46 [50688/54000 (94%)] Loss: 0.126840
Train Epoch: 46 [52096/54000 (96%)] Loss: 0.105001
Train Epoch: 46 [53504/54000 (99%)] Loss: 0.094605
    epoch          : 46
    loss           : 0.09230717961892697
    accuracy       : 0.9722463185511172
    top_k_acc      : 0.9971489928909952
    val_loss       : 0.03466828447206818
    val_accuracy   : 0.9893379559270518
    val_top_k_acc  : 0.999501329787234
Validation performance didn't improve for 10 epochs. Training stops.


git clone으로 불러온 data_loader/data_loaders.py 파일입니다.
저는 MNIST대신 CIFAR-10 데이터셋을 로드하도록 수정하겠습니다.

수정 전

from torchvision import datasets, transforms
from base import BaseDataLoader


class MnistDataLoader(BaseDataLoader):
    """
    MNIST data loading demo using BaseDataLoader
    """
    def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, num_workers=1, training=True):
        trsfm = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])
        self.data_dir = data_dir
        self.dataset = datasets.MNIST(self.data_dir, train=training, download=True, transform=trsfm)
        super().__init__(self.dataset, batch_size, shuffle, validation_split, num_workers)

수정 후

from torchvision import datasets, transforms
from base import BaseDataLoader


class Cifar10DataLoader(BaseDataLoader):
    """
    CIFAR-10 data loading using BaseDataLoader
    """
    def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, num_workers=1, training=True):
        trsfm = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
        ])
        self.data_dir = data_dir
        self.dataset = datasets.CIFAR10(self.data_dir, train=training, download=True, transform=trsfm)
        super().__init__(self.dataset, batch_size, shuffle, validation_split, num_workers)

CIFAR-10 데이터셋을 불러오고, 이미지를 정규화하는 데 필요한 평균과 표준편차 값을 사용한다. BaseDataLoader 클래스를 상속받아 데이터셋을 초기화하고, 나머지 설정을 그대로 사용한다.

config.json파일 수정
수정 전

{
    "name": "Mnist_LeNet",
    "n_gpu": 1,

    "arch": {
        "type": "MnistModel",
        "args": {}
    },
    "data_loader": {
        "type": "MnistDataLoader",
        "args":{
            "data_dir": "data/",
            "batch_size": 128,
            "shuffle": true,
            "validation_split": 0.1,
            "num_workers": 2
        }
    },
    "optimizer": {
        "type": "Adam",
        "args":{
            "lr": 0.001,
            "weight_decay": 0,
            "amsgrad": true
        }
    },
    "loss": "nll_loss",
    "metrics": [
        "accuracy", "top_k_acc"
    ],
    "lr_scheduler": {
        "type": "StepLR",
        "args": {
            "step_size": 50,
            "gamma": 0.1
        }
    },
    "trainer": {
        "epochs": 100,

        "save_dir": "saved/",
        "save_period": 1,
        "verbosity": 2,
        
        "monitor": "min val_loss",
        "early_stop": 10,

        "tensorboard": true
    }
}

수정 후
config.json 파일을 CIFAR-10 데이터셋을 사용할 수 있도록 수정하려면, data_loader 항목에서 MnistDataLoaderCifar10DataLoader로 변경하고, 필요한 매개변수들을 CIFAR-10에 맞게 조정해야 한다.

{
    "name": "Cifar10_LeNet",
    "n_gpu": 1,

    "arch": {
        "type": "LeNet", 
        "args": {}
    },
    "data_loader": {
        "type": "Cifar10DataLoader",
        "args": {
            "data_dir": "data/",
            "batch_size": 128,
            "shuffle": true,
            "validation_split": 0.1,
            "num_workers": 2
        }
    },
    "optimizer": {
        "type": "Adam",
        "args": {
            "lr": 0.001,
            "weight_decay": 0,
            "amsgrad": true
        }
    },
    "loss": "nll_loss",
    "metrics": [
        "accuracy", "top_k_acc"
    ],
    "lr_scheduler": {
        "type": "StepLR",
        "args": {
            "step_size": 50,
            "gamma": 0.1
        }
    },
    "trainer": {
        "epochs": 100,

        "save_dir": "saved/",
        "save_period": 1,
        "verbosity": 2,
        
        "monitor": "min val_loss",
        "early_stop": 10,

        "tensorboard": true
    }
}

주요 변경 사항

  1. name: "Cifar10_LeNet"으로 변경하였습니다. CIFAR-10 데이터셋에 맞게 업데이트한 것이다.

  2. arch: "type""LeNet"으로 설정했다. 이 부분은 모델의 아키텍처를 지정하는 것으로, CIFAR-10 데이터셋에 적합한 모델을 사용하도록 설정했다. 모델 이름은 사용하려는 실제 모델의 이름에 맞게 조정해야 한다.

import torch.nn as nn
import torch.nn.functional as F
from base import BaseModel


class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
  1. data_loader: "type""Cifar10DataLoader"로 변경하였습니다. 이 변경은 CIFAR-10 데이터셋을 사용하기 위한 것이다.
    data_loader/data_loaders.py 파일을 열고, Cifar10DataLoader 클래스를 추가했다.
    Cifar10DataLoader 클래스를 기반으로 학습하도록 변경한다.
from torchvision import datasets, transforms
from base import BaseDataLoader


class MnistDataLoader(BaseDataLoader):
    """
    MNIST data loading demo using BaseDataLoader
    """
    def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, num_workers=1, training=True):
        trsfm = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])
        self.data_dir = data_dir
        self.dataset = datasets.MNIST(self.data_dir, train=training, download=True, transform=trsfm)
        super().__init__(self.dataset, batch_size, shuffle, validation_split, num_workers)


class Cifar10DataLoader(BaseDataLoader):
    """
    CIFAR-10 data loading demo using BaseDataLoader
    """
    def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, num_workers=1, training=True):
        trsfm = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
        self.data_dir = data_dir
        self.dataset = datasets.CIFAR10(self.data_dir, train=training, download=True, transform=trsfm)
        super().__init__(self.dataset, batch_size, shuffle, validation_split, num_workers)
  1. args:

    • data_dir: CIFAR-10 데이터셋을 저장할 디렉토리이다. 기본값은 "data/"로 설정하였다.
    • batch_size: 배치 크기를 128로 설정하였다.
    • shuffle: 데이터를 무작위로 섞도록 설정하였다.
    • validation_split: 10%의 데이터를 검증 데이터로 사용할 수 있도록 설정하였다.
    • num_workers: 데이터 로딩을 위한 워커 수를 2로 설정하였습니다.
  2. trainer: "epochs""save_period"는 CIFAR-10 데이터셋을 사용할 때 학습 및 저장 주기에 따라 조정될 수 있다. 필요한 경우 값을 조정할 수 있다.

수정된 config.json 파일을 사용하여 CIFAR-10 데이터셋으로 모델을 학습할 수 있다.

(bohyun) user@server:~/Desktop/BOHYUN/0726/speedrun/pytorch-template$ python train.py -c config.json
/home/user/miniconda3/envs/bohyun/lib/python3.8/site-packages/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension: '/home/user/miniconda3/envs/bohyun/lib/python3.8/site-packages/torchvision/image.so: undefined symbol: _ZN3c1017RegisterOperatorsD1Ev'If you don't plan on using image functionality from `torchvision.io`, you can ignore this warning. Otherwise, there might be something wrong with your environment. Did you have `libjpeg` or `libpng` installed before building `torchvision` from source?
  warn(
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to data/cifar-10-python.tar.gz
 88%|██████████████████████████████████████████████▋      | 150208512/170498071 [00:12<00:04, 506


Loss 굉장히 엄청나..!
loss.pycross_entropy_loss를 정의했다.
train.py에서 직접 torch.nn.functional.cross_entropy를 사용하도록 변경했다.

def main(config):
    logger = config.get_logger('train')

    # setup data_loader instances
    data_loader = config.init_obj('data_loader', module_data)
    valid_data_loader = data_loader.split_validation()

    # build model architecture, then print to console
    model = config.init_obj('arch', module_arch)
    logger.info(model)

    # prepare for (multi-device) GPU training
    device, device_ids = prepare_device(config['n_gpu'])
    model = model.to(device)
    if len(device_ids) > 1:
        model = torch.nn.DataParallel(model, device_ids=device_ids)

    # get function handles of loss and metrics
    criterion = torch.nn.functional.cross_entropy


다행히 loss값이 줄어들었다!

(bohyun) user@server:~/Desktop/BOHYUN/0726/speedrun/pytorch-template$ python train.py -c config.json
/home/user/miniconda3/envs/bohyun/lib/python3.8/site-packages/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension: '/home/user/miniconda3/envs/bohyun/lib/python3.8/site-packages/torchvision/image.so: undefined symbol: _ZN3c1017RegisterOperatorsD1Ev'If you don't plan on using image functionality from `torchvision.io`, you can ignore this warning. Otherwise, there might be something wrong with your environment. Did you have `libjpeg` or `libpng` installed before building `torchvision` from source?
  warn(
Files already downloaded and verified
LeNet(
  (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)
Warning: visualization (Tensorboard) is configured to use, but currently not installed on this machine. Please install TensorboardX with 'pip install tensorboardx', upgrade PyTorch to version >= 1.1 to use 'torch.utils.tensorboard' or turn off the option in the 'config.json' file.
Train Epoch: 1 [0/45000 (0%)] Loss: 2.311082
Train Epoch: 1 [1408/45000 (3%)] Loss: 2.284087
Train Epoch: 1 [2816/45000 (6%)] Loss: 2.129331
Train Epoch: 1 [4224/45000 (9%)] Loss: 2.028467
Train Epoch: 1 [5632/45000 (13%)] Loss: 2.004406
Train Epoch: 1 [7040/45000 (16%)] Loss: 2.095008
Train Epoch: 1 [8448/45000 (19%)] Loss: 1.890626
Train Epoch: 1 [9856/45000 (22%)] Loss: 2.010740
Train Epoch: 1 [11264/45000 (25%)] Loss: 1.741392
Train Epoch: 1 [12672/45000 (28%)] Loss: 1.962260
Train Epoch: 1 [14080/45000 (31%)] Loss: 1.826351
Train Epoch: 1 [15488/45000 (34%)] Loss: 1.859895
Train Epoch: 1 [16896/45000 (38%)] Loss: 1.777300
Train Epoch: 1 [18304/45000 (41%)] Loss: 1.714267
Train Epoch: 1 [19712/45000 (44%)] Loss: 1.648159
Train Epoch: 1 [21120/45000 (47%)] Loss: 1.852577
Train Epoch: 1 [22528/45000 (50%)] Loss: 1.649575
Train Epoch: 1 [23936/45000 (53%)] Loss: 1.578230
Train Epoch: 1 [25344/45000 (56%)] Loss: 1.633049
Train Epoch: 1 [26752/45000 (59%)] Loss: 1.593858
Train Epoch: 1 [28160/45000 (63%)] Loss: 1.544563
Train Epoch: 1 [29568/45000 (66%)] Loss: 1.594563
Train Epoch: 1 [30976/45000 (69%)] Loss: 1.618854
Train Epoch: 1 [32384/45000 (72%)] Loss: 1.571820
Train Epoch: 1 [33792/45000 (75%)] Loss: 1.673366
Train Epoch: 1 [35200/45000 (78%)] Loss: 1.637884
Train Epoch: 1 [36608/45000 (81%)] Loss: 1.585719
Train Epoch: 1 [38016/45000 (84%)] Loss: 1.590082
Train Epoch: 1 [39424/45000 (88%)] Loss: 1.654451
Train Epoch: 1 [40832/45000 (91%)] Loss: 1.532288
Train Epoch: 1 [42240/45000 (94%)] Loss: 1.667048
Train Epoch: 1 [43648/45000 (97%)] Loss: 1.455048
    epoch          : 1
    loss           : 1.757788048549132
    accuracy       : 0.356060606060606
    top_k_acc      : 0.6880080097853536
    val_loss       : 1.5926437616348266
    val_accuracy   : 0.4203125
    val_top_k_acc  : 0.764453125
Saving checkpoint: saved/models/Cifar10_LeNet/0722_145243/checkpoint-epoch1.pth ...
Saving current best: model_best.pth ...
Train Epoch: 2 [0/45000 (0%)] Loss: 1.693297
Train Epoch: 2 [1408/45000 (3%)] Loss: 1.573273
Train Epoch: 2 [2816/45000 (6%)] Loss: 1.532989
Train Epoch: 2 [4224/45000 (9%)] Loss: 1.577287
Train Epoch: 2 [5632/45000 (13%)] Loss: 1.485909
Train Epoch: 2 [7040/45000 (16%)] Loss: 1.660465
Train Epoch: 2 [8448/45000 (19%)] Loss: 1.294579
Train Epoch: 2 [9856/45000 (22%)] Loss: 1.613634
Train Epoch: 2 [11264/45000 (25%)] Loss: 1.494236
Train Epoch: 2 [12672/45000 (28%)] Loss: 1.447646
Train Epoch: 2 [14080/45000 (31%)] Loss: 1.498989
Train Epoch: 2 [15488/45000 (34%)] Loss: 1.645624
Train Epoch: 2 [16896/45000 (38%)] Loss: 1.599334
Train Epoch: 2 [18304/45000 (41%)] Loss: 1.331498
Train Epoch: 2 [19712/45000 (44%)] Loss: 1.591256
Train Epoch: 2 [21120/45000 (47%)] Loss: 1.482763
Train Epoch: 2 [22528/45000 (50%)] Loss: 1.626119
Train Epoch: 2 [23936/45000 (53%)] Loss: 1.544034
Train Epoch: 2 [25344/45000 (56%)] Loss: 1.468094
Train Epoch: 2 [26752/45000 (59%)] Loss: 1.371051
Train Epoch: 2 [28160/45000 (63%)] Loss: 1.347986
Train Epoch: 2 [29568/45000 (66%)] Loss: 1.424763
Train Epoch: 2 [30976/45000 (69%)] Loss: 1.502793
Train Epoch: 2 [32384/45000 (72%)] Loss: 1.316469
Train Epoch: 2 [33792/45000 (75%)] Loss: 1.351766
Train Epoch: 2 [35200/45000 (78%)] Loss: 1.363080
Train Epoch: 2 [36608/45000 (81%)] Loss: 1.270391
Train Epoch: 2 [38016/45000 (84%)] Loss: 1.305497
Train Epoch: 2 [39424/45000 (88%)] Loss: 1.392212
Train Epoch: 2 [40832/45000 (91%)] Loss: 1.240124
Train Epoch: 2 [42240/45000 (94%)] Loss: 1.439730
Train Epoch: 2 [43648/45000 (97%)] Loss: 1.357497
    epoch          : 2
    loss           : 1.451602590693669
    accuracy       : 0.4710557725694445
    top_k_acc      : 0.8025888770517677
    val_loss       : 1.3521079152822495
    val_accuracy   : 0.5091796875
    val_top_k_acc  : 0.8333984375
Saving checkpoint: saved/models/Cifar10_LeNet/0722_145243/checkpoint-epoch2.pth ...
Saving current best: model_best.pth ...
Train Epoch: 3 [0/45000 (0%)] Loss: 1.332903
Train Epoch: 3 [1408/45000 (3%)] Loss: 1.376957
Train Epoch: 3 [2816/45000 (6%)] Loss: 1.301742
Train Epoch: 3 [4224/45000 (9%)] Loss: 1.348263
Train Epoch: 3 [5632/45000 (13%)] Loss: 1.305164
Train Epoch: 3 [7040/45000 (16%)] Loss: 1.245183
Train Epoch: 3 [8448/45000 (19%)] Loss: 1.446791
Train Epoch: 3 [9856/45000 (22%)] Loss: 1.421561
Train Epoch: 3 [11264/45000 (25%)] Loss: 1.309925
Train Epoch: 3 [12672/45000 (28%)] Loss: 1.438207
Train Epoch: 3 [14080/45000 (31%)] Loss: 1.328497
Train Epoch: 3 [15488/45000 (34%)] Loss: 1.378746
Train Epoch: 3 [16896/45000 (38%)] Loss: 1.464753
Train Epoch: 3 [18304/45000 (41%)] Loss: 1.312119
Train Epoch: 3 [19712/45000 (44%)] Loss: 1.512890
Train Epoch: 3 [21120/45000 (47%)] Loss: 1.186520
Train Epoch: 3 [22528/45000 (50%)] Loss: 1.473404
Train Epoch: 3 [23936/45000 (53%)] Loss: 1.400741
Train Epoch: 3 [25344/45000 (56%)] Loss: 1.394369
Train Epoch: 3 [26752/45000 (59%)] Loss: 1.279838
Train Epoch: 3 [28160/45000 (63%)] Loss: 1.397544
Train Epoch: 3 [29568/45000 (66%)] Loss: 1.374417
Train Epoch: 3 [30976/45000 (69%)] Loss: 1.332261
Train Epoch: 3 [32384/45000 (72%)] Loss: 1.299266
Train Epoch: 3 [33792/45000 (75%)] Loss: 1.220224
Train Epoch: 3 [35200/45000 (78%)] Loss: 1.534112
Train Epoch: 3 [36608/45000 (81%)] Loss: 1.189254
Train Epoch: 3 [38016/45000 (84%)] Loss: 1.279112
Train Epoch: 3 [39424/45000 (88%)] Loss: 1.299281
Train Epoch: 3 [40832/45000 (91%)] Loss: 1.354111
Train Epoch: 3 [42240/45000 (94%)] Loss: 1.204156
Train Epoch: 3 [43648/45000 (97%)] Loss: 1.083748
    epoch          : 3
    loss           : 1.3260643976655873
    accuracy       : 0.5230281328914141
    top_k_acc      : 0.835757477114899
    val_loss       : 1.3033548563718795
    val_accuracy   : 0.528125
    val_top_k_acc  : 0.8384765625
Saving checkpoint: saved/models/Cifar10_LeNet/0722_145243/checkpoint-epoch3.pth ...
Saving current best: model_best.pth ...
Train Epoch: 4 [0/45000 (0%)] Loss: 1.401881
Train Epoch: 4 [1408/45000 (3%)] Loss: 1.211562
Train Epoch: 4 [2816/45000 (6%)] Loss: 1.421231
Train Epoch: 4 [4224/45000 (9%)] Loss: 1.296725
Train Epoch: 4 [5632/45000 (13%)] Loss: 1.401259
Train Epoch: 4 [7040/45000 (16%)] Loss: 1.240167
Train Epoch: 4 [8448/45000 (19%)] Loss: 1.114549
Train Epoch: 4 [9856/45000 (22%)] Loss: 1.244109
Train Epoch: 4 [11264/45000 (25%)] Loss: 1.413304
Train Epoch: 4 [12672/45000 (28%)] Loss: 1.238069
Train Epoch: 4 [14080/45000 (31%)] Loss: 1.096353
Train Epoch: 4 [15488/45000 (34%)] Loss: 1.267534
Train Epoch: 4 [16896/45000 (38%)] Loss: 1.267906
Train Epoch: 4 [18304/45000 (41%)] Loss: 1.086545
Train Epoch: 4 [19712/45000 (44%)] Loss: 1.292011
Train Epoch: 4 [21120/45000 (47%)] Loss: 1.258958
Train Epoch: 4 [22528/45000 (50%)] Loss: 1.248809
Train Epoch: 4 [23936/45000 (53%)] Loss: 1.209560
Train Epoch: 4 [25344/45000 (56%)] Loss: 1.212018
Train Epoch: 4 [26752/45000 (59%)] Loss: 1.285514
Train Epoch: 4 [28160/45000 (63%)] Loss: 1.302564
Train Epoch: 4 [29568/45000 (66%)] Loss: 1.115664
Train Epoch: 4 [30976/45000 (69%)] Loss: 1.185650
Train Epoch: 4 [32384/45000 (72%)] Loss: 1.303093
Train Epoch: 4 [33792/45000 (75%)] Loss: 1.173501
Train Epoch: 4 [35200/45000 (78%)] Loss: 1.071488
Train Epoch: 4 [36608/45000 (81%)] Loss: 1.204483
Train Epoch: 4 [38016/45000 (84%)] Loss: 1.487452
Train Epoch: 4 [39424/45000 (88%)] Loss: 1.201912
Train Epoch: 4 [40832/45000 (91%)] Loss: 1.192295
Train Epoch: 4 [42240/45000 (94%)] Loss: 1.334574
Train Epoch: 4 [43648/45000 (97%)] Loss: 1.413898
    epoch          : 4
    loss           : 1.246184879405932
    accuracy       : 0.5540413904671717
    top_k_acc      : 0.852423157354798
    val_loss       : 1.212526473402977
    val_accuracy   : 0.5671875
    val_top_k_acc  : 0.8599609375
Saving checkpoint: saved/models/Cifar10_LeNet/0722_145243/checkpoint-epoch4.pth ...
Saving current best: model_best.pth ...
Train Epoch: 5 [0/45000 (0%)] Loss: 1.299487
Train Epoch: 5 [1408/45000 (3%)] Loss: 1.276864
Train Epoch: 5 [2816/45000 (6%)] Loss: 1.293610
Train Epoch: 5 [4224/45000 (9%)] Loss: 1.346122
Train Epoch: 5 [5632/45000 (13%)] Loss: 1.176972
Train Epoch: 5 [7040/45000 (16%)] Loss: 1.201090
Train Epoch: 5 [8448/45000 (19%)] Loss: 1.242998
Train Epoch: 5 [9856/45000 (22%)] Loss: 1.107223
Train Epoch: 5 [11264/45000 (25%)] Loss: 1.138589
Train Epoch: 5 [12672/45000 (28%)] Loss: 1.071263
Train Epoch: 5 [14080/45000 (31%)] Loss: 1.253372
Train Epoch: 5 [15488/45000 (34%)] Loss: 1.306817
Train Epoch: 5 [16896/45000 (38%)] Loss: 1.265868
Train Epoch: 5 [18304/45000 (41%)] Loss: 1.349330
Train Epoch: 5 [19712/45000 (44%)] Loss: 1.186573
Train Epoch: 5 [21120/45000 (47%)] Loss: 1.174410
Train Epoch: 5 [22528/45000 (50%)] Loss: 1.258422
Train Epoch: 5 [23936/45000 (53%)] Loss: 1.248507
Train Epoch: 5 [25344/45000 (56%)] Loss: 1.253944
Train Epoch: 5 [26752/45000 (59%)] Loss: 1.204013
Train Epoch: 5 [28160/45000 (63%)] Loss: 1.084910
Train Epoch: 5 [29568/45000 (66%)] Loss: 1.184014
Train Epoch: 5 [30976/45000 (69%)] Loss: 1.123324
Train Epoch: 5 [32384/45000 (72%)] Loss: 1.325830
Train Epoch: 5 [33792/45000 (75%)] Loss: 1.175442
Train Epoch: 5 [35200/45000 (78%)] Loss: 1.222975
Train Epoch: 5 [36608/45000 (81%)] Loss: 1.255943
Train Epoch: 5 [38016/45000 (84%)] Loss: 1.252389
Train Epoch: 5 [39424/45000 (88%)] Loss: 1.280669
Train Epoch: 5 [40832/45000 (91%)] Loss: 1.130400
Train Epoch: 5 [42240/45000 (94%)] Loss: 1.149628
Train Epoch: 5 [43648/45000 (97%)] Loss: 1.141840
    epoch          : 5
    loss           : 1.1801500501619144
    accuracy       : 0.5779277146464646
    top_k_acc      : 0.8649384469696969
    val_loss       : 1.148858542740345
    val_accuracy   : 0.59453125
    val_top_k_acc  : 0.8716796875
Saving checkpoint: saved/models/Cifar10_LeNet/0722_145243/checkpoint-epoch5.pth ...
Saving current best: model_best.pth ...
Train Epoch: 6 [0/45000 (0%)] Loss: 1.088257
Train Epoch: 6 [1408/45000 (3%)] Loss: 1.004750
Train Epoch: 6 [2816/45000 (6%)] Loss: 1.235136
Train Epoch: 6 [4224/45000 (9%)] Loss: 1.079967
Train Epoch: 6 [5632/45000 (13%)] Loss: 0.989684
Train Epoch: 6 [7040/45000 (16%)] Loss: 0.980146
Train Epoch: 6 [8448/45000 (19%)] Loss: 1.181001
Train Epoch: 6 [9856/45000 (22%)] Loss: 1.066919
Train Epoch: 6 [11264/45000 (25%)] Loss: 1.290936
Train Epoch: 6 [12672/45000 (28%)] Loss: 1.005111
Train Epoch: 6 [14080/45000 (31%)] Loss: 1.035926
Train Epoch: 6 [15488/45000 (34%)] Loss: 1.205193
Train Epoch: 6 [16896/45000 (38%)] Loss: 1.148724
Train Epoch: 6 [18304/45000 (41%)] Loss: 1.161606
Train Epoch: 6 [19712/45000 (44%)] Loss: 1.158653
Train Epoch: 6 [21120/45000 (47%)] Loss: 0.959053
Train Epoch: 6 [22528/45000 (50%)] Loss: 1.135890
Train Epoch: 6 [23936/45000 (53%)] Loss: 1.204551
Train Epoch: 6 [25344/45000 (56%)] Loss: 1.005802
Train Epoch: 6 [26752/45000 (59%)] Loss: 1.253474
Train Epoch: 6 [28160/45000 (63%)] Loss: 1.216064
Train Epoch: 6 [29568/45000 (66%)] Loss: 1.091174
Train Epoch: 6 [30976/45000 (69%)] Loss: 1.033377
Train Epoch: 6 [32384/45000 (72%)] Loss: 1.200705
Train Epoch: 6 [33792/45000 (75%)] Loss: 1.045272
Train Epoch: 6 [35200/45000 (78%)] Loss: 1.102125
Train Epoch: 6 [36608/45000 (81%)] Loss: 1.232696
Train Epoch: 6 [38016/45000 (84%)] Loss: 1.061720
Train Epoch: 6 [39424/45000 (88%)] Loss: 1.314298
Train Epoch: 6 [40832/45000 (91%)] Loss: 0.987156
Train Epoch: 6 [42240/45000 (94%)] Loss: 1.027130
Train Epoch: 6 [43648/45000 (97%)] Loss: 0.981405
    epoch          : 6
    loss           : 1.1255753971636295
    accuracy       : 0.6007215711805555
    top_k_acc      : 0.8752589370265151
    val_loss       : 1.1360471621155739
    val_accuracy   : 0.59765625
    val_top_k_acc  : 0.880078125
Saving checkpoint: saved/models/Cifar10_LeNet/0722_145243/checkpoint-epoch6.pth ...
Saving current best: model_best.pth ...
Train Epoch: 7 [0/45000 (0%)] Loss: 1.055499
Train Epoch: 7 [1408/45000 (3%)] Loss: 1.090695
Train Epoch: 7 [2816/45000 (6%)] Loss: 1.075405
Train Epoch: 7 [4224/45000 (9%)] Loss: 1.113984
Train Epoch: 7 [5632/45000 (13%)] Loss: 1.025546
Train Epoch: 7 [7040/45000 (16%)] Loss: 1.084318
Train Epoch: 7 [8448/45000 (19%)] Loss: 0.957558
Train Epoch: 7 [9856/45000 (22%)] Loss: 1.175414
Train Epoch: 7 [11264/45000 (25%)] Loss: 0.993390
Train Epoch: 7 [12672/45000 (28%)] Loss: 1.099832
Train Epoch: 7 [14080/45000 (31%)] Loss: 1.105725
Train Epoch: 7 [15488/45000 (34%)] Loss: 1.126402
Train Epoch: 7 [16896/45000 (38%)] Loss: 1.316167
Train Epoch: 7 [18304/45000 (41%)] Loss: 0.904510
Train Epoch: 7 [19712/45000 (44%)] Loss: 0.989934
Train Epoch: 7 [21120/45000 (47%)] Loss: 0.849800
Train Epoch: 7 [22528/45000 (50%)] Loss: 1.096114
Train Epoch: 7 [23936/45000 (53%)] Loss: 1.041114
Train Epoch: 7 [25344/45000 (56%)] Loss: 1.059751
Train Epoch: 7 [26752/45000 (59%)] Loss: 1.312766
Train Epoch: 7 [28160/45000 (63%)] Loss: 1.166769
Train Epoch: 7 [29568/45000 (66%)] Loss: 1.102752
Train Epoch: 7 [30976/45000 (69%)] Loss: 1.084084
Train Epoch: 7 [32384/45000 (72%)] Loss: 1.028466
Train Epoch: 7 [33792/45000 (75%)] Loss: 0.796235
Train Epoch: 7 [35200/45000 (78%)] Loss: 1.232450
Train Epoch: 7 [36608/45000 (81%)] Loss: 1.081826
Train Epoch: 7 [38016/45000 (84%)] Loss: 1.116175
Train Epoch: 7 [39424/45000 (88%)] Loss: 1.049885
Train Epoch: 7 [40832/45000 (91%)] Loss: 1.019670
Train Epoch: 7 [42240/45000 (94%)] Loss: 0.986338
Train Epoch: 7 [43648/45000 (97%)] Loss: 1.055743
    epoch          : 7
    loss           : 1.0725817074152557
    accuracy       : 0.6205487492108586
    top_k_acc      : 0.886114563604798
    val_loss       : 1.125757098197937
    val_accuracy   : 0.601953125
    val_top_k_acc  : 0.876953125
Saving checkpoint: saved/models/Cifar10_LeNet/0722_145243/checkpoint-epoch7.pth ...
Saving current best: model_best.pth ...
Train Epoch: 8 [0/45000 (0%)] Loss: 1.182363
Train Epoch: 8 [1408/45000 (3%)] Loss: 1.053009
Train Epoch: 8 [2816/45000 (6%)] Loss: 1.087380
Train Epoch: 8 [4224/45000 (9%)] Loss: 1.250609
Train Epoch: 8 [5632/45000 (13%)] Loss: 1.107539
Train Epoch: 8 [7040/45000 (16%)] Loss: 1.265630
Train Epoch: 8 [8448/45000 (19%)] Loss: 1.102556
Train Epoch: 8 [9856/45000 (22%)] Loss: 1.254344
Train Epoch: 8 [11264/45000 (25%)] Loss: 0.924904
Train Epoch: 8 [12672/45000 (28%)] Loss: 0.897804
Train Epoch: 8 [14080/45000 (31%)] Loss: 1.052867
Train Epoch: 8 [15488/45000 (34%)] Loss: 1.009198
Train Epoch: 8 [16896/45000 (38%)] Loss: 1.209001
Train Epoch: 8 [18304/45000 (41%)] Loss: 1.093536
Train Epoch: 8 [19712/45000 (44%)] Loss: 1.048473
Train Epoch: 8 [21120/45000 (47%)] Loss: 0.968676
Train Epoch: 8 [22528/45000 (50%)] Loss: 1.119528
Train Epoch: 8 [23936/45000 (53%)] Loss: 1.299663
Train Epoch: 8 [25344/45000 (56%)] Loss: 1.070257
Train Epoch: 8 [26752/45000 (59%)] Loss: 1.005109
Train Epoch: 8 [28160/45000 (63%)] Loss: 0.964205
Train Epoch: 8 [29568/45000 (66%)] Loss: 0.846506
Train Epoch: 8 [30976/45000 (69%)] Loss: 0.938006
Train Epoch: 8 [32384/45000 (72%)] Loss: 1.038977
Train Epoch: 8 [33792/45000 (75%)] Loss: 1.129711
Train Epoch: 8 [35200/45000 (78%)] Loss: 0.992284
Train Epoch: 8 [36608/45000 (81%)] Loss: 1.109119
Train Epoch: 8 [38016/45000 (84%)] Loss: 1.091673
Train Epoch: 8 [39424/45000 (88%)] Loss: 1.147746
Train Epoch: 8 [40832/45000 (91%)] Loss: 0.826579
Train Epoch: 8 [42240/45000 (94%)] Loss: 0.880384
Train Epoch: 8 [43648/45000 (97%)] Loss: 1.066597
    epoch          : 8
    loss           : 1.0299025618217208
    accuracy       : 0.6349900370896464
    top_k_acc      : 0.8934930358270201
    val_loss       : 1.0598522379994393
    val_accuracy   : 0.620703125
    val_top_k_acc  : 0.8947265625
Saving checkpoint: saved/models/Cifar10_LeNet/0722_145243/checkpoint-epoch8.pth ...
Saving current best: model_best.pth ...
Train Epoch: 9 [0/45000 (0%)] Loss: 0.901991
Train Epoch: 9 [1408/45000 (3%)] Loss: 0.812038
Train Epoch: 9 [2816/45000 (6%)] Loss: 0.713308
Train Epoch: 9 [4224/45000 (9%)] Loss: 0.967145
Train Epoch: 9 [5632/45000 (13%)] Loss: 1.053719
Train Epoch: 9 [7040/45000 (16%)] Loss: 1.236303
Train Epoch: 9 [8448/45000 (19%)] Loss: 1.049692
Train Epoch: 9 [9856/45000 (22%)] Loss: 1.068757
Train Epoch: 9 [11264/45000 (25%)] Loss: 0.938932
Train Epoch: 9 [12672/45000 (28%)] Loss: 0.791045
Train Epoch: 9 [14080/45000 (31%)] Loss: 1.027412
Train Epoch: 9 [15488/45000 (34%)] Loss: 1.011786
Train Epoch: 9 [16896/45000 (38%)] Loss: 1.080511
Train Epoch: 9 [18304/45000 (41%)] Loss: 0.953819
Train Epoch: 9 [19712/45000 (44%)] Loss: 0.955995
Train Epoch: 9 [21120/45000 (47%)] Loss: 0.828439
Train Epoch: 9 [22528/45000 (50%)] Loss: 1.005574
Train Epoch: 9 [23936/45000 (53%)] Loss: 0.874705
Train Epoch: 9 [25344/45000 (56%)] Loss: 0.978828
Train Epoch: 9 [26752/45000 (59%)] Loss: 1.121823
Train Epoch: 9 [28160/45000 (63%)] Loss: 0.981903
Train Epoch: 9 [29568/45000 (66%)] Loss: 0.901816
Train Epoch: 9 [30976/45000 (69%)] Loss: 1.005196
Train Epoch: 9 [32384/45000 (72%)] Loss: 0.818558
Train Epoch: 9 [33792/45000 (75%)] Loss: 1.000438
Train Epoch: 9 [35200/45000 (78%)] Loss: 1.074451
Train Epoch: 9 [36608/45000 (81%)] Loss: 0.841017
Train Epoch: 9 [38016/45000 (84%)] Loss: 0.930088
Train Epoch: 9 [39424/45000 (88%)] Loss: 0.789353
Train Epoch: 9 [40832/45000 (91%)] Loss: 0.829898
Train Epoch: 9 [42240/45000 (94%)] Loss: 0.941184
Train Epoch: 9 [43648/45000 (97%)] Loss: 0.847386
    epoch          : 9
    loss           : 0.990502804517746
    accuracy       : 0.6500872987689393
    top_k_acc      : 0.9014756944444445
    val_loss       : 1.0505714237689971
    val_accuracy   : 0.625390625
    val_top_k_acc  : 0.89765625
Saving checkpoint: saved/models/Cifar10_LeNet/0722_145243/checkpoint-epoch9.pth ...
Saving current best: model_best.pth ...
Train Epoch: 10 [0/45000 (0%)] Loss: 0.750488
Train Epoch: 10 [1408/45000 (3%)] Loss: 0.888372
Train Epoch: 10 [2816/45000 (6%)] Loss: 0.973849
Train Epoch: 10 [4224/45000 (9%)] Loss: 0.917334
Train Epoch: 10 [5632/45000 (13%)] Loss: 1.035519
Train Epoch: 10 [7040/45000 (16%)] Loss: 0.947066
Train Epoch: 10 [8448/45000 (19%)] Loss: 0.981028
Train Epoch: 10 [9856/45000 (22%)] Loss: 1.064674
Train Epoch: 10 [11264/45000 (25%)] Loss: 0.882197
Train Epoch: 10 [12672/45000 (28%)] Loss: 0.996694
Train Epoch: 10 [14080/45000 (31%)] Loss: 0.877907
Train Epoch: 10 [15488/45000 (34%)] Loss: 0.979022
Train Epoch: 10 [16896/45000 (38%)] Loss: 0.739088
Train Epoch: 10 [18304/45000 (41%)] Loss: 1.061241
Train Epoch: 10 [19712/45000 (44%)] Loss: 0.919300
Train Epoch: 10 [21120/45000 (47%)] Loss: 1.058437
Train Epoch: 10 [22528/45000 (50%)] Loss: 0.871295
Train Epoch: 10 [23936/45000 (53%)] Loss: 0.822586
Train Epoch: 10 [25344/45000 (56%)] Loss: 0.946040
Train Epoch: 10 [26752/45000 (59%)] Loss: 1.021629
Train Epoch: 10 [28160/45000 (63%)] Loss: 1.013809
Train Epoch: 10 [29568/45000 (66%)] Loss: 1.003351
Train Epoch: 10 [30976/45000 (69%)] Loss: 0.666750
Train Epoch: 10 [32384/45000 (72%)] Loss: 0.801211
Train Epoch: 10 [33792/45000 (75%)] Loss: 0.972062
Train Epoch: 10 [35200/45000 (78%)] Loss: 1.013361
Train Epoch: 10 [36608/45000 (81%)] Loss: 1.013442
Train Epoch: 10 [38016/45000 (84%)] Loss: 0.960849
Train Epoch: 10 [39424/45000 (88%)] Loss: 1.005431
Train Epoch: 10 [40832/45000 (91%)] Loss: 0.983348
Train Epoch: 10 [42240/45000 (94%)] Loss: 1.059026
Train Epoch: 10 [43648/45000 (97%)] Loss: 0.887484
    epoch          : 10
    loss           : 0.9610089971260591
    accuracy       : 0.6623781762941919
    top_k_acc      : 0.905889954229798
    val_loss       : 1.0409195333719254
    val_accuracy   : 0.62734375
    val_top_k_acc  : 0.8953125
Saving checkpoint: saved/models/Cifar10_LeNet/0722_145243/checkpoint-epoch10.pth ...
Saving current best: model_best.pth ...
Train Epoch: 11 [0/45000 (0%)] Loss: 0.923823
Train Epoch: 11 [1408/45000 (3%)] Loss: 0.823638
Train Epoch: 11 [2816/45000 (6%)] Loss: 0.989438
Train Epoch: 11 [4224/45000 (9%)] Loss: 0.892790
Train Epoch: 11 [5632/45000 (13%)] Loss: 0.966308
Train Epoch: 11 [7040/45000 (16%)] Loss: 1.036240
Train Epoch: 11 [8448/45000 (19%)] Loss: 1.010116
Train Epoch: 11 [9856/45000 (22%)] Loss: 0.859646
Train Epoch: 11 [11264/45000 (25%)] Loss: 0.889599
Train Epoch: 11 [12672/45000 (28%)] Loss: 1.056447
Train Epoch: 11 [14080/45000 (31%)] Loss: 0.782600
Train Epoch: 11 [15488/45000 (34%)] Loss: 0.925699
Train Epoch: 11 [16896/45000 (38%)] Loss: 1.013393
Train Epoch: 11 [18304/45000 (41%)] Loss: 0.996419
Train Epoch: 11 [19712/45000 (44%)] Loss: 0.882355
Train Epoch: 11 [21120/45000 (47%)] Loss: 0.827101
Train Epoch: 11 [22528/45000 (50%)] Loss: 0.833380
Train Epoch: 11 [23936/45000 (53%)] Loss: 0.978863
Train Epoch: 11 [25344/45000 (56%)] Loss: 1.026799
Train Epoch: 11 [26752/45000 (59%)] Loss: 0.869467
Train Epoch: 11 [28160/45000 (63%)] Loss: 0.853738
Train Epoch: 11 [29568/45000 (66%)] Loss: 0.857987
Train Epoch: 11 [30976/45000 (69%)] Loss: 0.755217
Train Epoch: 11 [32384/45000 (72%)] Loss: 0.840597
Train Epoch: 11 [33792/45000 (75%)] Loss: 1.001999
Train Epoch: 11 [35200/45000 (78%)] Loss: 0.803402
Train Epoch: 11 [36608/45000 (81%)] Loss: 1.015158
Train Epoch: 11 [38016/45000 (84%)] Loss: 0.960375
Train Epoch: 11 [39424/45000 (88%)] Loss: 0.842795
Train Epoch: 11 [40832/45000 (91%)] Loss: 0.999473
Train Epoch: 11 [42240/45000 (94%)] Loss: 0.853421
Train Epoch: 11 [43648/45000 (97%)] Loss: 0.926417
    epoch          : 11
    loss           : 0.9223284745080904
    accuracy       : 0.6748441445707071
    top_k_acc      : 0.9122104837436869
    val_loss       : 1.0483410030603408
    val_accuracy   : 0.62265625
    val_top_k_acc  : 0.898828125
Saving checkpoint: saved/models/Cifar10_LeNet/0722_145243/checkpoint-epoch11.pth ...
Train Epoch: 12 [0/45000 (0%)] Loss: 0.839948
Train Epoch: 12 [1408/45000 (3%)] Loss: 0.781067
Train Epoch: 12 [2816/45000 (6%)] Loss: 0.928835
Train Epoch: 12 [4224/45000 (9%)] Loss: 0.919579
Train Epoch: 12 [5632/45000 (13%)] Loss: 0.888303
Train Epoch: 12 [7040/45000 (16%)] Loss: 0.764395
Train Epoch: 12 [8448/45000 (19%)] Loss: 0.672037
Train Epoch: 12 [9856/45000 (22%)] Loss: 0.849778
Train Epoch: 12 [11264/45000 (25%)] Loss: 1.016248
Train Epoch: 12 [12672/45000 (28%)] Loss: 0.922121
Train Epoch: 12 [14080/45000 (31%)] Loss: 0.832104
Train Epoch: 12 [15488/45000 (34%)] Loss: 0.878688
Train Epoch: 12 [16896/45000 (38%)] Loss: 1.011967
Train Epoch: 12 [18304/45000 (41%)] Loss: 0.970751
Train Epoch: 12 [19712/45000 (44%)] Loss: 0.848732
Train Epoch: 12 [21120/45000 (47%)] Loss: 0.927162
Train Epoch: 12 [22528/45000 (50%)] Loss: 0.822467
Train Epoch: 12 [23936/45000 (53%)] Loss: 0.902060
Train Epoch: 12 [25344/45000 (56%)] Loss: 0.997272
Train Epoch: 12 [26752/45000 (59%)] Loss: 0.873540
Train Epoch: 12 [28160/45000 (63%)] Loss: 0.978591
Train Epoch: 12 [29568/45000 (66%)] Loss: 0.839814
Train Epoch: 12 [30976/45000 (69%)] Loss: 0.852791
Train Epoch: 12 [32384/45000 (72%)] Loss: 0.969526
Train Epoch: 12 [33792/45000 (75%)] Loss: 1.062154
Train Epoch: 12 [35200/45000 (78%)] Loss: 0.700287
Train Epoch: 12 [36608/45000 (81%)] Loss: 1.009396
Train Epoch: 12 [38016/45000 (84%)] Loss: 0.782711
Train Epoch: 12 [39424/45000 (88%)] Loss: 0.893738
Train Epoch: 12 [40832/45000 (91%)] Loss: 1.108445
Train Epoch: 12 [42240/45000 (94%)] Loss: 0.850492
Train Epoch: 12 [43648/45000 (97%)] Loss: 0.831905
    epoch          : 12
    loss           : 0.8954865581948649
    accuracy       : 0.6842028685290404
    top_k_acc      : 0.9181438407512627
    val_loss       : 1.020134025812149
    val_accuracy   : 0.6408203125
    val_top_k_acc  : 0.9033203125
Saving checkpoint: saved/models/Cifar10_LeNet/0722_145243/checkpoint-epoch12.pth ...
Saving current best: model_best.pth ...
Train Epoch: 13 [0/45000 (0%)] Loss: 0.830100
Train Epoch: 13 [1408/45000 (3%)] Loss: 0.756679
Train Epoch: 13 [2816/45000 (6%)] Loss: 0.671197
Train Epoch: 13 [4224/45000 (9%)] Loss: 0.971551
Train Epoch: 13 [5632/45000 (13%)] Loss: 0.999658
Train Epoch: 13 [7040/45000 (16%)] Loss: 1.020469
Train Epoch: 13 [8448/45000 (19%)] Loss: 0.766345
Train Epoch: 13 [9856/45000 (22%)] Loss: 0.935873
Train Epoch: 13 [11264/45000 (25%)] Loss: 0.796107
Train Epoch: 13 [12672/45000 (28%)] Loss: 0.958403
Train Epoch: 13 [14080/45000 (31%)] Loss: 0.901687
Train Epoch: 13 [15488/45000 (34%)] Loss: 0.711622
Train Epoch: 13 [16896/45000 (38%)] Loss: 0.999816
Train Epoch: 13 [18304/45000 (41%)] Loss: 0.800690
Train Epoch: 13 [19712/45000 (44%)] Loss: 0.932063
Train Epoch: 13 [21120/45000 (47%)] Loss: 1.055891
Train Epoch: 13 [22528/45000 (50%)] Loss: 0.895391
Train Epoch: 13 [23936/45000 (53%)] Loss: 0.843843
Train Epoch: 13 [25344/45000 (56%)] Loss: 0.908437
Train Epoch: 13 [26752/45000 (59%)] Loss: 0.902339
Train Epoch: 13 [28160/45000 (63%)] Loss: 1.041674
Train Epoch: 13 [29568/45000 (66%)] Loss: 0.979390
Train Epoch: 13 [30976/45000 (69%)] Loss: 0.932182
Train Epoch: 13 [32384/45000 (72%)] Loss: 0.851873
Train Epoch: 13 [33792/45000 (75%)] Loss: 0.870563
Train Epoch: 13 [35200/45000 (78%)] Loss: 0.942896
Train Epoch: 13 [36608/45000 (81%)] Loss: 0.784553
Train Epoch: 13 [38016/45000 (84%)] Loss: 0.917073
Train Epoch: 13 [39424/45000 (88%)] Loss: 1.054311
Train Epoch: 13 [40832/45000 (91%)] Loss: 0.909091
Train Epoch: 13 [42240/45000 (94%)] Loss: 0.827222
Train Epoch: 13 [43648/45000 (97%)] Loss: 0.953323
    epoch          : 13
    loss           : 0.8648704830557108
    accuracy       : 0.6942372948232323
    top_k_acc      : 0.9212486190025253
    val_loss       : 1.0032038912177086
    val_accuracy   : 0.6447265625
    val_top_k_acc  : 0.90859375
Saving checkpoint: saved/models/Cifar10_LeNet/0722_145243/checkpoint-epoch13.pth ...
Saving current best: model_best.pth ...
Train Epoch: 14 [0/45000 (0%)] Loss: 0.815349
Train Epoch: 14 [1408/45000 (3%)] Loss: 0.857148
Train Epoch: 14 [2816/45000 (6%)] Loss: 0.935290
Train Epoch: 14 [4224/45000 (9%)] Loss: 0.855447
Train Epoch: 14 [5632/45000 (13%)] Loss: 0.871716
Train Epoch: 14 [7040/45000 (16%)] Loss: 0.673660
Train Epoch: 14 [8448/45000 (19%)] Loss: 0.880691
Train Epoch: 14 [9856/45000 (22%)] Loss: 0.975428
Train Epoch: 14 [11264/45000 (25%)] Loss: 0.751729
Train Epoch: 14 [12672/45000 (28%)] Loss: 0.704253
Train Epoch: 14 [14080/45000 (31%)] Loss: 0.827796
Train Epoch: 14 [15488/45000 (34%)] Loss: 0.850868
Train Epoch: 14 [16896/45000 (38%)] Loss: 0.887877
Train Epoch: 14 [18304/45000 (41%)] Loss: 0.876028
Train Epoch: 14 [19712/45000 (44%)] Loss: 0.885767
Train Epoch: 14 [21120/45000 (47%)] Loss: 0.852582
Train Epoch: 14 [22528/45000 (50%)] Loss: 0.886271
Train Epoch: 14 [23936/45000 (53%)] Loss: 0.917076
Train Epoch: 14 [25344/45000 (56%)] Loss: 0.771606
Train Epoch: 14 [26752/45000 (59%)] Loss: 0.930203
Train Epoch: 14 [28160/45000 (63%)] Loss: 1.021493
Train Epoch: 14 [29568/45000 (66%)] Loss: 0.748006
Train Epoch: 14 [30976/45000 (69%)] Loss: 0.867918
Train Epoch: 14 [32384/45000 (72%)] Loss: 0.945301
Train Epoch: 14 [33792/45000 (75%)] Loss: 0.818264
Train Epoch: 14 [35200/45000 (78%)] Loss: 0.948010
Train Epoch: 14 [36608/45000 (81%)] Loss: 0.931059
Train Epoch: 14 [38016/45000 (84%)] Loss: 0.756923
Train Epoch: 14 [39424/45000 (88%)] Loss: 0.921435
Train Epoch: 14 [40832/45000 (91%)] Loss: 0.704261
Train Epoch: 14 [42240/45000 (94%)] Loss: 0.722232
Train Epoch: 14 [43648/45000 (97%)] Loss: 0.744458
    epoch          : 14
    loss           : 0.8458949383348227
    accuracy       : 0.7009721235795454
    top_k_acc      : 0.9247874250315656
    val_loss       : 1.0027408182621003
    val_accuracy   : 0.6515625
    val_top_k_acc  : 0.909375
Saving checkpoint: saved/models/Cifar10_LeNet/0722_145243/checkpoint-epoch14.pth ...
Saving current best: model_best.pth ...
Train Epoch: 15 [0/45000 (0%)] Loss: 0.926461
Train Epoch: 15 [1408/45000 (3%)] Loss: 0.754750
Train Epoch: 15 [2816/45000 (6%)] Loss: 0.720997
Train Epoch: 15 [4224/45000 (9%)] Loss: 0.745690
Train Epoch: 15 [5632/45000 (13%)] Loss: 0.999385
Train Epoch: 15 [7040/45000 (16%)] Loss: 0.763259
Train Epoch: 15 [8448/45000 (19%)] Loss: 0.823969
Train Epoch: 15 [9856/45000 (22%)] Loss: 0.793698
Train Epoch: 15 [11264/45000 (25%)] Loss: 0.782717
Train Epoch: 15 [12672/45000 (28%)] Loss: 0.770053
Train Epoch: 15 [14080/45000 (31%)] Loss: 0.722096
Train Epoch: 15 [15488/45000 (34%)] Loss: 0.752565
Train Epoch: 15 [16896/45000 (38%)] Loss: 0.879226
Train Epoch: 15 [18304/45000 (41%)] Loss: 0.763195
Train Epoch: 15 [19712/45000 (44%)] Loss: 0.650786
Train Epoch: 15 [21120/45000 (47%)] Loss: 0.704479
Train Epoch: 15 [22528/45000 (50%)] Loss: 0.767152
Train Epoch: 15 [23936/45000 (53%)] Loss: 0.879763
Train Epoch: 15 [25344/45000 (56%)] Loss: 0.831756
Train Epoch: 15 [26752/45000 (59%)] Loss: 0.861238
Train Epoch: 15 [28160/45000 (63%)] Loss: 0.696502
Train Epoch: 15 [29568/45000 (66%)] Loss: 0.849680
Train Epoch: 15 [30976/45000 (69%)] Loss: 1.039806
Train Epoch: 15 [32384/45000 (72%)] Loss: 0.780041
Train Epoch: 15 [33792/45000 (75%)] Loss: 0.580751
Train Epoch: 15 [35200/45000 (78%)] Loss: 0.891863
Train Epoch: 15 [36608/45000 (81%)] Loss: 0.779546
Train Epoch: 15 [38016/45000 (84%)] Loss: 0.827319
Train Epoch: 15 [39424/45000 (88%)] Loss: 0.883568
Train Epoch: 15 [40832/45000 (91%)] Loss: 0.795430
Train Epoch: 15 [42240/45000 (94%)] Loss: 0.749381
Train Epoch: 15 [43648/45000 (97%)] Loss: 0.896578
    epoch          : 15
    loss           : 0.8149280143393711
    accuracy       : 0.7112210976957071
    top_k_acc      : 0.9290783814709596
    val_loss       : 0.9873785026371479
    val_accuracy   : 0.6560546875
    val_top_k_acc  : 0.9080078125
Saving checkpoint: saved/models/Cifar10_LeNet/0722_145243/checkpoint-epoch15.pth ...
Saving current best: model_best.pth ...
Train Epoch: 16 [0/45000 (0%)] Loss: 0.770628
Train Epoch: 16 [1408/45000 (3%)] Loss: 0.740320
Train Epoch: 16 [2816/45000 (6%)] Loss: 0.999864
Train Epoch: 16 [4224/45000 (9%)] Loss: 0.731030
Train Epoch: 16 [5632/45000 (13%)] Loss: 0.635134
Train Epoch: 16 [7040/45000 (16%)] Loss: 0.806698
Train Epoch: 16 [8448/45000 (19%)] Loss: 0.816584
Train Epoch: 16 [9856/45000 (22%)] Loss: 0.813603
Train Epoch: 16 [11264/45000 (25%)] Loss: 0.757479
Train Epoch: 16 [12672/45000 (28%)] Loss: 0.826807
Train Epoch: 16 [14080/45000 (31%)] Loss: 0.663840
Train Epoch: 16 [15488/45000 (34%)] Loss: 0.920332
Train Epoch: 16 [16896/45000 (38%)] Loss: 0.820315
Train Epoch: 16 [18304/45000 (41%)] Loss: 0.829886
Train Epoch: 16 [19712/45000 (44%)] Loss: 0.774563
Train Epoch: 16 [21120/45000 (47%)] Loss: 0.714753
Train Epoch: 16 [22528/45000 (50%)] Loss: 1.024034
Train Epoch: 16 [23936/45000 (53%)] Loss: 0.618661
Train Epoch: 16 [25344/45000 (56%)] Loss: 0.774184
Train Epoch: 16 [26752/45000 (59%)] Loss: 0.906607
Train Epoch: 16 [28160/45000 (63%)] Loss: 0.516756
Train Epoch: 16 [29568/45000 (66%)] Loss: 0.787273
Train Epoch: 16 [30976/45000 (69%)] Loss: 0.647561
Train Epoch: 16 [32384/45000 (72%)] Loss: 0.678976
Train Epoch: 16 [33792/45000 (75%)] Loss: 0.799528
Train Epoch: 16 [35200/45000 (78%)] Loss: 0.775636
Train Epoch: 16 [36608/45000 (81%)] Loss: 0.737521
Train Epoch: 16 [38016/45000 (84%)] Loss: 0.743080
Train Epoch: 16 [39424/45000 (88%)] Loss: 0.871715
Train Epoch: 16 [40832/45000 (91%)] Loss: 0.852877
Train Epoch: 16 [42240/45000 (94%)] Loss: 0.837181
Train Epoch: 16 [43648/45000 (97%)] Loss: 0.898900
    epoch          : 16
    loss           : 0.7917350547557528
    accuracy       : 0.7215169270833334
    top_k_acc      : 0.9331523240214646
    val_loss       : 1.0241489231586456
    val_accuracy   : 0.641015625
    val_top_k_acc  : 0.9021484375
Saving checkpoint: saved/models/Cifar10_LeNet/0722_145243/checkpoint-epoch16.pth ...
Train Epoch: 17 [0/45000 (0%)] Loss: 0.632721
Train Epoch: 17 [1408/45000 (3%)] Loss: 0.836995
Train Epoch: 17 [2816/45000 (6%)] Loss: 0.800756
Train Epoch: 17 [4224/45000 (9%)] Loss: 0.797079
Train Epoch: 17 [5632/45000 (13%)] Loss: 0.794427
Train Epoch: 17 [7040/45000 (16%)] Loss: 0.749777
Train Epoch: 17 [8448/45000 (19%)] Loss: 0.649248
Train Epoch: 17 [9856/45000 (22%)] Loss: 0.827842
Train Epoch: 17 [11264/45000 (25%)] Loss: 0.780937
Train Epoch: 17 [12672/45000 (28%)] Loss: 0.835085
Train Epoch: 17 [14080/45000 (31%)] Loss: 0.830586
Train Epoch: 17 [15488/45000 (34%)] Loss: 0.647384
Train Epoch: 17 [16896/45000 (38%)] Loss: 0.749322
Train Epoch: 17 [18304/45000 (41%)] Loss: 0.746269
Train Epoch: 17 [19712/45000 (44%)] Loss: 0.780225
Train Epoch: 17 [21120/45000 (47%)] Loss: 0.710672
Train Epoch: 17 [22528/45000 (50%)] Loss: 0.697672
Train Epoch: 17 [23936/45000 (53%)] Loss: 0.984214
Train Epoch: 17 [25344/45000 (56%)] Loss: 0.924689
Train Epoch: 17 [26752/45000 (59%)] Loss: 0.864405
Train Epoch: 17 [28160/45000 (63%)] Loss: 0.724198
Train Epoch: 17 [29568/45000 (66%)] Loss: 0.782862
Train Epoch: 17 [30976/45000 (69%)] Loss: 0.870514
Train Epoch: 17 [32384/45000 (72%)] Loss: 0.813521
Train Epoch: 17 [33792/45000 (75%)] Loss: 0.702031
Train Epoch: 17 [35200/45000 (78%)] Loss: 0.745122
Train Epoch: 17 [36608/45000 (81%)] Loss: 0.643037
Train Epoch: 17 [38016/45000 (84%)] Loss: 0.613040
Train Epoch: 17 [39424/45000 (88%)] Loss: 0.761461
Train Epoch: 17 [40832/45000 (91%)] Loss: 0.785930
Train Epoch: 17 [42240/45000 (94%)] Loss: 0.804363
Train Epoch: 17 [43648/45000 (97%)] Loss: 0.789039
    epoch          : 17
    loss           : 0.7751436091282151
    accuracy       : 0.7275859177714646
    top_k_acc      : 0.9355172821969696
    val_loss       : 1.0094095513224601
    val_accuracy   : 0.655859375
    val_top_k_acc  : 0.9048828125
Saving checkpoint: saved/models/Cifar10_LeNet/0722_145243/checkpoint-epoch17.pth ...
Train Epoch: 18 [0/45000 (0%)] Loss: 0.912798
Train Epoch: 18 [1408/45000 (3%)] Loss: 0.646165
Train Epoch: 18 [2816/45000 (6%)] Loss: 0.610245
Train Epoch: 18 [4224/45000 (9%)] Loss: 0.712968
Train Epoch: 18 [5632/45000 (13%)] Loss: 0.919746
Train Epoch: 18 [7040/45000 (16%)] Loss: 0.738489
Train Epoch: 18 [8448/45000 (19%)] Loss: 0.964826
Train Epoch: 18 [9856/45000 (22%)] Loss: 0.665661
Train Epoch: 18 [11264/45000 (25%)] Loss: 0.820208
Train Epoch: 18 [12672/45000 (28%)] Loss: 0.774737
Train Epoch: 18 [14080/45000 (31%)] Loss: 0.606422
Train Epoch: 18 [15488/45000 (34%)] Loss: 0.634152
Train Epoch: 18 [16896/45000 (38%)] Loss: 0.665806
Train Epoch: 18 [18304/45000 (41%)] Loss: 0.703845
Train Epoch: 18 [19712/45000 (44%)] Loss: 0.724115
Train Epoch: 18 [21120/45000 (47%)] Loss: 0.858767
Train Epoch: 18 [22528/45000 (50%)] Loss: 0.914971
Train Epoch: 18 [23936/45000 (53%)] Loss: 0.899234
Train Epoch: 18 [25344/45000 (56%)] Loss: 0.896950
Train Epoch: 18 [26752/45000 (59%)] Loss: 0.598256
Train Epoch: 18 [28160/45000 (63%)] Loss: 0.797579
Train Epoch: 18 [29568/45000 (66%)] Loss: 0.724742
Train Epoch: 18 [30976/45000 (69%)] Loss: 0.711451
Train Epoch: 18 [32384/45000 (72%)] Loss: 0.794877
Train Epoch: 18 [33792/45000 (75%)] Loss: 0.700822
Train Epoch: 18 [35200/45000 (78%)] Loss: 0.730092
Train Epoch: 18 [36608/45000 (81%)] Loss: 0.764895
Train Epoch: 18 [38016/45000 (84%)] Loss: 0.758665
Train Epoch: 18 [39424/45000 (88%)] Loss: 0.876395
Train Epoch: 18 [40832/45000 (91%)] Loss: 0.751065
Train Epoch: 18 [42240/45000 (94%)] Loss: 0.751348
Train Epoch: 18 [43648/45000 (97%)] Loss: 0.693681
    epoch          : 18
    loss           : 0.7511896978725087
    accuracy       : 0.7355291193181818
    top_k_acc      : 0.9389056581439394
    val_loss       : 1.0292415291070938
    val_accuracy   : 0.648046875
    val_top_k_acc  : 0.9037109375
Saving checkpoint: saved/models/Cifar10_LeNet/0722_145243/checkpoint-epoch18.pth ...
Train Epoch: 19 [0/45000 (0%)] Loss: 0.667245
Train Epoch: 19 [1408/45000 (3%)] Loss: 0.633884
Train Epoch: 19 [2816/45000 (6%)] Loss: 0.668805
Train Epoch: 19 [4224/45000 (9%)] Loss: 0.638836
Train Epoch: 19 [5632/45000 (13%)] Loss: 0.627658
Train Epoch: 19 [7040/45000 (16%)] Loss: 0.765687
Train Epoch: 19 [8448/45000 (19%)] Loss: 0.648248
Train Epoch: 19 [9856/45000 (22%)] Loss: 0.786415
Train Epoch: 19 [11264/45000 (25%)] Loss: 0.601976
Train Epoch: 19 [12672/45000 (28%)] Loss: 0.657138
Train Epoch: 19 [14080/45000 (31%)] Loss: 0.897736
Train Epoch: 19 [15488/45000 (34%)] Loss: 0.696369
Train Epoch: 19 [16896/45000 (38%)] Loss: 0.813039
Train Epoch: 19 [18304/45000 (41%)] Loss: 0.716361
Train Epoch: 19 [19712/45000 (44%)] Loss: 0.786678
Train Epoch: 19 [21120/45000 (47%)] Loss: 0.764095
Train Epoch: 19 [22528/45000 (50%)] Loss: 0.636790
Train Epoch: 19 [23936/45000 (53%)] Loss: 0.742417
Train Epoch: 19 [25344/45000 (56%)] Loss: 0.659951
Train Epoch: 19 [26752/45000 (59%)] Loss: 0.724423
Train Epoch: 19 [28160/45000 (63%)] Loss: 0.869024
Train Epoch: 19 [29568/45000 (66%)] Loss: 0.774333
Train Epoch: 19 [30976/45000 (69%)] Loss: 0.886113
Train Epoch: 19 [32384/45000 (72%)] Loss: 0.792295
Train Epoch: 19 [33792/45000 (75%)] Loss: 0.665857
Train Epoch: 19 [35200/45000 (78%)] Loss: 0.838052
Train Epoch: 19 [36608/45000 (81%)] Loss: 0.761542
Train Epoch: 19 [38016/45000 (84%)] Loss: 0.717784
Train Epoch: 19 [39424/45000 (88%)] Loss: 0.855918
Train Epoch: 19 [40832/45000 (91%)] Loss: 0.712209
Train Epoch: 19 [42240/45000 (94%)] Loss: 0.653968
Train Epoch: 19 [43648/45000 (97%)] Loss: 0.673014
    epoch          : 19
    loss           : 0.7279951828108593
    accuracy       : 0.7415389244002526
    top_k_acc      : 0.9420400291982323
    val_loss       : 1.0607590571045875
    val_accuracy   : 0.648046875
    val_top_k_acc  : 0.903515625
Saving checkpoint: saved/models/Cifar10_LeNet/0722_145243/checkpoint-epoch19.pth ...
Train Epoch: 20 [0/45000 (0%)] Loss: 0.862416
Train Epoch: 20 [1408/45000 (3%)] Loss: 0.733674
Train Epoch: 20 [2816/45000 (6%)] Loss: 0.746174
Train Epoch: 20 [4224/45000 (9%)] Loss: 0.781364
Train Epoch: 20 [5632/45000 (13%)] Loss: 0.605555
Train Epoch: 20 [7040/45000 (16%)] Loss: 0.692463
Train Epoch: 20 [8448/45000 (19%)] Loss: 0.894890
Train Epoch: 20 [9856/45000 (22%)] Loss: 0.727676
Train Epoch: 20 [11264/45000 (25%)] Loss: 0.641883
Train Epoch: 20 [12672/45000 (28%)] Loss: 0.773392
Train Epoch: 20 [14080/45000 (31%)] Loss: 0.625053
Train Epoch: 20 [15488/45000 (34%)] Loss: 0.528645
Train Epoch: 20 [16896/45000 (38%)] Loss: 0.639930
Train Epoch: 20 [18304/45000 (41%)] Loss: 0.544965
Train Epoch: 20 [19712/45000 (44%)] Loss: 0.537010
Train Epoch: 20 [21120/45000 (47%)] Loss: 0.639223
Train Epoch: 20 [22528/45000 (50%)] Loss: 0.670522
Train Epoch: 20 [23936/45000 (53%)] Loss: 0.612434
Train Epoch: 20 [25344/45000 (56%)] Loss: 0.572076
Train Epoch: 20 [26752/45000 (59%)] Loss: 0.718023
Train Epoch: 20 [28160/45000 (63%)] Loss: 0.868828
Train Epoch: 20 [29568/45000 (66%)] Loss: 0.809501
Train Epoch: 20 [30976/45000 (69%)] Loss: 0.688319
Train Epoch: 20 [32384/45000 (72%)] Loss: 0.799011
Train Epoch: 20 [33792/45000 (75%)] Loss: 0.994791
Train Epoch: 20 [35200/45000 (78%)] Loss: 0.708890
Train Epoch: 20 [36608/45000 (81%)] Loss: 0.604731
Train Epoch: 20 [38016/45000 (84%)] Loss: 0.561342
Train Epoch: 20 [39424/45000 (88%)] Loss: 0.637584
Train Epoch: 20 [40832/45000 (91%)] Loss: 0.687308
Train Epoch: 20 [42240/45000 (94%)] Loss: 0.620674
Train Epoch: 20 [43648/45000 (97%)] Loss: 0.782604
    epoch          : 20
    loss           : 0.715023057704622
    accuracy       : 0.7463132299558081
    top_k_acc      : 0.9448612097537878
    val_loss       : 1.0520759254693985
    val_accuracy   : 0.64140625
    val_top_k_acc  : 0.8986328125
Saving checkpoint: saved/models/Cifar10_LeNet/0722_145243/checkpoint-epoch20.pth ...
Train Epoch: 21 [0/45000 (0%)] Loss: 0.592278
Train Epoch: 21 [1408/45000 (3%)] Loss: 0.522283
Train Epoch: 21 [2816/45000 (6%)] Loss: 0.685153
Train Epoch: 21 [4224/45000 (9%)] Loss: 0.617217
Train Epoch: 21 [5632/45000 (13%)] Loss: 0.614216
Train Epoch: 21 [7040/45000 (16%)] Loss: 0.702992
Train Epoch: 21 [8448/45000 (19%)] Loss: 0.648547
Train Epoch: 21 [9856/45000 (22%)] Loss: 0.726128
Train Epoch: 21 [11264/45000 (25%)] Loss: 0.706113
Train Epoch: 21 [12672/45000 (28%)] Loss: 0.671948

profile
Fall in love with Computer Vision

0개의 댓글