Ordered Pairs, Cartesian Product and Plane

CharliePark·2020년 9월 2일
0

TIL

목록 보기
20/67

 

Ordered Pairs

an ordering of objects such that order of the objects matter

(1,2)(2,1)(1, 2) \not = (2, 1)

Ordered n-Tuple

(x1,x2,x3,,xn)=(y1,y2,y3,,yn)(x_1, x_2, x_3, \cdots, x_n) = (y_1, y_2, y_3, \cdots, y_n) if x1=y1x_1 = y_1

(a,b)(a, b) : ordered 2-Tuple

(a,b,c)(a, b, c) : ordered 3-Tuple

 

 

Cartesian Product

Given sets AA and BB, the Cartesian Product of AA and BB, denoted A×BA \times B and read "AA cross BB", is the set of all ordered pairs (a,b)(a, b), where bb is in AA and bb is in BB

A×B={(a,b)  aA and bB}A \times B = \{ (a, b)\ |\ a \in A\ and\ b \in B \}

 

e.g.A=(a,b),B=(1,2), then A×B={(a,1),(b,1),(a,2),(b,2)}e.g.\quad A = (a, b), B = (1, 2),\ then\ A\times B = \{(a, 1), (b, 1), (a, 2), (b, 2)\}

 

make sure that A×BB×AA \times B \not = B \times A

because it has orders

 

 

A×B×C={(a,b,c)  aA,  bB and cC}A \times B \times C= \{ (a, b, c)\ |\ a \in A,\ \ b \in B\ and\ c \in C \}

 

e.g.A=(a,b),B=(1,2), C=(x,y)e.g.\quad A = (a, b), B = (1, 2),\ C = (x, y)

thenA×B×C={(a,1,x),(a,1,y),(b,1,x),(b,1,y),(a,2,x),(a,2,y),(b,2,x),(b,2,y)}then\\ A\times B \times C = \{(a, 1, x), (a, 1, y), (b, 1, x), (b, 1, y), (a, 2, x), (a, 2, y), (b, 2, x), (b, 2, y)\}

 

make sure that A×B×C(A×B)×CA\times B \times C \not = (A\times B) \times C

(A×B)×C={((a,1),x),((a,1),y),((b,1),x),((b,1),y),((a,2),x),((a,2),y),((b,2),x),((b,2),y)}(A\times B) \times C = \{((a, 1), x), ((a, 1), y), ((b, 1), x), ((b, 1), y), ((a, 2), x), ((a, 2), y), ((b, 2), x), ((b, 2), y)\}

nested tuples are made

 

 

Cartesian Plane

Cartesian Plane (=Coordinate Plane) (named after Rene Decartes)

R×RR \times R → 2D Cartesian Plane

R×R×RR\times R\times R → 3D Cartesian Plane

0개의 댓글