Tautologies, Contradictions, and Logical Equivalence Laws

CharliePark·2020년 9월 5일
0

TIL

목록 보기
25/67

Logical Equivalence

Two statements are logically equivalent if and only if they have identical truth values for each possisble substitution of statements for their statement variable.

 

 

Tautologies and Contradictions

p¬pp¬pTFTFTT\begin{matrix} p & \neg p & p \lor \neg p \\ T & F & T\\ F & T & T\\ \end{matrix}

Tautology is a compound statement that is always true regardless of the truth values of individual statements

 

p¬pp¬pTFFFTF\begin{matrix} p & \neg p & p \land \neg p \\ T & F & F\\ F & T & F\\ \end{matrix}

Contradiction is a compound statement that is always false regardless of the truth values of individual statements

 

e.g. (p¬q)(¬pq)pq¬p¬qp¬q¬pq(p¬q)(¬pq)TTFFFTFTFFTTFFFTTFFTFFFTTFTFso,(p¬q)(¬pq) is a contradictione.g.\ (p \land \neg q) \land (\neg p \lor q)\\ \begin{matrix} p & q & \neg p & \neg q & p \land \neg q & \neg p \lor q & (p \land \neg q) \land (\neg p \lor q) \\ T & T & F & F & F & T & F\\ T & F & F & T & T & F & F\\ F & T & T & F & F & T & F\\ F & F & T & T & F & T & F \end{matrix}\\ so, (p \land \neg q) \land (\neg p \lor q)\ is\ a\ contradiction

 

 

De Morgan's Laws in logic

¬(pq)¬p¬q\neg (p \land q) \equiv \neg p \lor \neg q

¬(pq)¬p¬q\neg (p \lor q) \equiv \neg p \land \neg q

proof for ¬(pq)¬p¬qpq¬p¬qpq¬(pq)¬p¬qTTFFTFFTFFTFTTFTTFFTTFFTTFTTproof\ for\ \neg (p \land q) \equiv \neg p \lor \neg q\\ \begin{matrix} p & q & \neg p & \neg q & p \land q & \neg (p \land q) & \neg p \lor \neg q\\ T & T & F & F & T & F & F\\ T & F & F & T & F & T & T\\ F & T & T & F & F & T & T\\ F & F & T & T & F & T & T \end{matrix}\\

proof for ¬(pq)¬p¬qpq¬p¬qpq¬(pq)¬p¬qTTFFTFFTFFTTFFFTTFTFFFFTTFTTproof\ for\ \neg (p \lor q) \equiv \neg p \land \neg q\\ \begin{matrix} p & q & \neg p & \neg q & p \lor q & \neg (p \lor q) & \neg p \land \neg q\\ T & T & F & F & T & F & F\\ T & F & F & T & T & F & F\\ F & T & T & F & T & F & F\\ F & F & T & T & F & T & T \end{matrix}\\

 

 

Logical Equivalence Laws

Commutative laws : pqqp, pqqpp \land q \equiv q \land p,\ p \lor q \equiv q \lor p

Associative laws : (pq)rp(qr), (pq)rp(qr)(p \land q) \land r \equiv p \land (q \land r),\ (p \lor q) \lor r \equiv p \lor (q \lor r)

Distributive laws : p(qr)(pq)(pr), p(qr)(pq)(pr)p \land (q \lor r) \equiv (p \land q) \lor (p \land r),\ p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)

Identity laws : ptp, pcpp \land \bold{t} \equiv p,\ p \lor \bold{c} \equiv p

Negation laws : p¬pt, p¬pcp \lor \neg p \equiv \bold{t},\ p \land \neg p \equiv \bold{c}

Double negative law : ¬(¬p)p\neg(\neg p) \equiv p

Idempotent laws : ppp, pppp \land p \equiv p,\ p \lor p \equiv p

Universal bound laws : ptt, pccp \lor \bold{t} \equiv \bold{t},\ p \land \bold{c} \equiv \bold{c}

De Morgan's laws : ¬(pq)¬p¬q, ¬(pq)¬p¬q\neg (p \land q) \equiv \neg p \lor \neg q,\ \neg (p \lor q) \equiv \neg p \land \neg q

Absorption laws : p(pq)p, p(pq)pp \lor (p \land q) \equiv p,\ p \land (p \lor q) \equiv p

Negations of t(autology) and c(ontradiction) : ¬tc, ¬ct\neg \bold{t} \equiv \bold{c},\ \neg \bold{c} \equiv \bold{t}

0개의 댓글