Logical Equivalence
Two statements are logically equivalent if and only if they have identical truth values for each possisble substitution of statements for their statement variable.
Tautologies and Contradictions
pTF¬pFTp∨¬pTT
Tautology is a compound statement that is always true regardless of the truth values of individual statements
pTF¬pFTp∧¬pFF
Contradiction is a compound statement that is always false regardless of the truth values of individual statements
e.g. (p∧¬q)∧(¬p∨q)pTTFFqTFTF¬pFFTT¬qFTFTp∧¬qFTFF¬p∨qTFTT(p∧¬q)∧(¬p∨q)FFFFso,(p∧¬q)∧(¬p∨q) is a contradiction
De Morgan's Laws in logic
¬(p∧q)≡¬p∨¬q
¬(p∨q)≡¬p∧¬q
proof for ¬(p∧q)≡¬p∨¬qpTTFFqTFTF¬pFFTT¬qFTFTp∧qTFFF¬(p∧q)FTTT¬p∨¬qFTTT
proof for ¬(p∨q)≡¬p∧¬qpTTFFqTFTF¬pFFTT¬qFTFTp∨qTTTF¬(p∨q)FFFT¬p∧¬qFFFT
Logical Equivalence Laws
Commutative laws : p∧q≡q∧p, p∨q≡q∨p
Associative laws : (p∧q)∧r≡p∧(q∧r), (p∨q)∨r≡p∨(q∨r)
Distributive laws : p∧(q∨r)≡(p∧q)∨(p∧r), p∨(q∧r)≡(p∨q)∧(p∨r)
Identity laws : p∧t≡p, p∨c≡p
Negation laws : p∨¬p≡t, p∧¬p≡c
Double negative law : ¬(¬p)≡p
Idempotent laws : p∧p≡p, p∨p≡p
Universal bound laws : p∨t≡t, p∧c≡c
De Morgan's laws : ¬(p∧q)≡¬p∨¬q, ¬(p∨q)≡¬p∧¬q
Absorption laws : p∨(p∧q)≡p, p∧(p∨q)≡p
Negations of t(autology) and c(ontradiction) : ¬t≡c, ¬c≡t