import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class 실험실 {
public static void main(String[] args) throws Exception{
BufferedReader br =new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int K = Integer.parseInt(st.nextToken()); // 참외
int max = 0;
int sum = 0;
st = new StringTokenizer(br.readLine());
st.nextToken();
int a = Integer.parseInt(st.nextToken()); //첫번째 변은 마지막 변과 곱해주어야 하므로 따로 처리
int before = a;
for(int i = 1 ; i < 6 ; i++) {
st = new StringTokenizer(br.readLine());
st.nextToken();
int now = Integer.parseInt(st.nextToken());
max = Math.max(now*before, max); // 최댓값은 인접한 변의 곱 중 하나이다.
sum += now*before;
before = now;
}
sum+= a*before; // 마지막 변과 첫번째 변 곱해줌
max = Math.max(a*before, max); // 마지막변과 첫번째 변 크기 체크
int result = (max- (3*max - sum))*K; // 3*max - sum : 빈 부분의 넓이
System.out.println(result);
}
}
위와 같은 도형이 있다고 할 때 인접한 변들을 계속해서 곱해본다고 생각하면 다음과 같다.
여기서 규칙을 하나 찾을 수 있는데 4부위로 나누어서 보면
1사분면(100x30)
은 하늘색
, 갈색
, 빨간색
3부분이 겹친 것을 확인할 수 있고
2사분면(30x60)
은 회색
, 하늘색
, 빨간색
3부분이 겹친 것을 알 수 있다.
3사분면(60x20)
은 국방색
, 빨간색
2부분이 겹쳐있고
4사분면(100x20)
은 보라색
, 갈색
, 빨간색
3부분이 겹쳐있다.
이를 전부 더하면
따라서 빈 부분의 넓이는
이다.