따지고 보면 굉장히 헷깔릴 수 있으므로 명확히 하자면,
예를 들어 A, B, C, D 라는 노드를 가진 그래프에서 특정 노드를 A 라고 한다면,
A 외 모든 노드인 B, C, D 각 노드와 A 간에 (즉, A - B, A - C, A - D) 각각 가장 짧은 경로를 찾는 문제를 의미함
- 전체 쌍(all-pair) 최단 경로: 그래프 내의 모든 노드 쌍 (u, v) 에 대한 최단 경로를 찾는 문제
다익스트라 알고리즘의 다양한 변형 로직이 있지만, 가장 개선된 우선순위 큐를 사용하는 방식에 집중해서 설명하기로 함
- 우선순위 큐를 활용한 다익스트라 알고리즘
- 우선순위 큐는 MinHeap 방식을 활용해서, 현재 가장 짧은 거리를 가진 노드 정보를 먼저 꺼내게 됨
- 첫 정점을 기준으로 배열을 선언하여 첫 정점에서 각 정점까지의 거리를 저장
- 초기에는 첫 정점의 거리는 0, 나머지는 무한대로 저장함 (inf 라고 표현함)
- 우선순위 큐에 (첫 정점, 거리 0) 만 먼저 넣음
- 우선순위 큐에서 노드를 꺼냄
- 처음에는 첫 정점만 저장되어 있으므로, 첫 정점이 꺼내짐
- 첫 정점에 인접한 노드들 각각에 대해, 첫 정점에서 각 노드로 가는 거리와 현재 배열에 저장되어 있는 첫 정점에서 각 정점까지의 거리를 비교한다.
- 배열에 저장되어 있는 거리보다, 첫 정점에서 해당 노드로 가는 거리가 더 짧을 경우, 배열에 해당 노드의 거리를 업데이트한다.
- 배열에 해당 노드의 거리가 업데이트된 경우, 우선순위 큐에 넣는다.
- 결과적으로 너비 우선 탐색 방식과 유사하게, 첫 정점에 인접한 노드들을 순차적으로 방문하게 됨
- 만약 배열에 기록된 현재까지 발견된 가장 짧은 거리보다, 더 긴 거리(루트)를 가진 (노드, 거리)의 경우에는 해당 노드와 인접한 노드간의 거리 계산을 하지 않음
- 2번의 과정을 우선순위 큐에 꺼낼 노드가 없을 때까지 반복한다.
이전 표에서 보듯이, 첫 정점 이외에 모두 inf 였었으므로, 첫 정점에 인접한 노드들은 모두 우선순위 큐에 들어가고, 첫 정점과 인접한 노드간의 거리가 배열에 업데이트됨
우선순위 큐를 사용하면 불필요한 계산 과정을 줄일 수 있음
import heapq
queue = []
heapq.heappush(queue, [2, 'A'])
heapq.heappush(queue, [5, 'B'])
heapq.heappush(queue, [1, 'C'])
heapq.heappush(queue, [7, 'D'])
print (queue)
for index in range(len(queue)):
print (heapq.heappop(queue))
[[1, 'C'], [5, 'B'], [2, 'A'], [7, 'D']]
[1, 'C']
[2, 'A']
[5, 'B']
[7, 'D']
mygraph = {
'A': {'B': 8, 'C': 1, 'D': 2},
'B': {},
'C': {'B': 5, 'D': 2},
'D': {'E': 3, 'F': 5},
'E': {'F': 1},
'F': {'A': 5}
}
import heapq
def dijkstra(graph, start):
distances = {node: float('inf') for node in graph}
distances[start] = 0
queue = []
heapq.heappush(queue, [distances[start], start])
while queue:
current_distance, current_node = heapq.heappop(queue)
if distances[current_node] < current_distance:
continue
for adjacent, weight in graph[current_node].items():
distance = current_distance + weight
if distance < distances[adjacent]:
distances[adjacent] = distance
heapq.heappush(queue, [distance, adjacent])
return distances
dijkstra(mygraph, 'A')
{'A': 0, 'B': 6, 'C': 1, 'D': 2, 'E': 5, 'F': 6}
import heapq
# 탐색할 그래프와 시작 정점을 인수로 전달받습니다.
def dijkstra(graph, start, end):
# 시작 정점에서 각 정점까지의 거리를 저장할 딕셔너리를 생성하고, 무한대(inf)로 초기화합니다.
distances = {vertex: [float('inf'), start] for vertex in graph}
# 그래프의 시작 정점의 거리는 0으로 초기화 해줌
distances[start] = [0, start]
# 모든 정점이 저장될 큐를 생성합니다.
queue = []
# 그래프의 시작 정점과 시작 정점의 거리(0)을 최소힙에 넣어줌
heapq.heappush(queue, [distances[start][0], start])
while queue:
# 큐에서 정점을 하나씩 꺼내 인접한 정점들의 가중치를 모두 확인하여 업데이트합니다.
current_distance, current_vertex = heapq.heappop(queue)
# 더 짧은 경로가 있다면 무시한다.
if distances[current_vertex][0] < current_distance:
continue
for adjacent, weight in graph[current_vertex].items():
distance = current_distance + weight
# 만약 시작 정점에서 인접 정점으로 바로 가는 것보다 현재 정점을 통해 가는 것이 더 가까울 경우에는
if distance < distances[adjacent][0]:
# 거리를 업데이트합니다.
distances[adjacent] = [distance, current_vertex]
heapq.heappush(queue, [distance, adjacent])
path = end
path_output = end + '->'
while distances[path][1] != start:
path_output += distances[path][1] + '->'
path = distances[path][1]
path_output += start
print (path_output)
return distances
# 방향 그래프
mygraph = {
'A': {'B': 8, 'C': 1, 'D': 2},
'B': {},
'C': {'B': 5, 'D': 2},
'D': {'E': 3, 'F': 5},
'E': {'F': 1},
'F': {'A': 5}
}
print(dijkstra(mygraph, 'A', 'F'))
F->E->D->A
{'A': [0, 'A'], 'B': [6, 'C'], 'C': [1, 'A'], 'D': [2, 'A'], 'E': [5, 'D'], 'F': [6, 'E']}