이코테 2021 강의를 보고 정리한 글입니다!
📌 강의 영상 보러 가기
- 가장 짧은 경로를 찾는 알고리즘
- 다양한 문제 상황
- 한 지점에서 다른 한 지점까지의 최단 경로
- 한 지점에서 다른 모든 지점까지의 최단 경로
- 모든 지점에서 다른 모든 지점까지의 최단 경로
- 각 지점은 그래프에서 노드로 표현
- 지점 간 연결된 도로는 그래프에서 간선으로 표현
개요
- 특정한 노드에서 출발, 다른 모든 노드로 가는 최단 경로 계산
- 음의 간선이 없을 때 정상적으로 동작
- 그리디 알고리즘으로 분류 (매 상황에서 가장 비용이 적은 노드를 선택해 임의의 과정을 반복
동작 과정
- 출발 노드 설정
- 최단 거리 테이블 초기화
- 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드 선택
- 해당 노드를 거쳐 다른 노드로 가는 비용을 계산하여 최단 거리 테이블 갱신
- 위 과정에서 3번과 4번을 반복
특징
- 그리디 알고리즘으로 분류
- 한 번 처리된 노드의 최단 거리는 고정되어 더 이상 바뀌지 않음
- 한 단계당 하나의 노드에 대한 최단 거리를 확실히 찾는 것으로 이해할 수 있음
- 다익스트라 알고리즘을 수행한 뒤에 테이블에 각 노드까지의 최단 거리 정보가 저장
- 완벽한 형태의 최단 경로를 구하려면 소스코드에 추가적인 기능을 넣어야 함
# 다익스트라 알고리즘 간단한 구현 (python)
import sys
input = sys.stdin.readline
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정
# 노드의 개수, 간선의 개수를 입력받기
n, m = map(int, input().split())
# 시작 노드 번호를 입력받기
start = int(input())
# 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트 만들기
graph = [[] for i in range(n + 1)]
# 방문한 적이 있는지 체크하는 목적의 리스트를 만들기
visited = [False] * (n + 1)
# 최단 거리 테이블을 모두 무한으로 초기화
distane = [INF] * (n + 1)
# 모든 간선 정보를 입력받기
for _ in range(m):
a, b, c = map(int, input().split())
# a번 노드에서 b번 노드로 가는 비용이 c라는 의미
graph[a].append((b, c))
# 방문하지 않은 노드 중에서, 가장 최단 거리가 짧은 노드의 번호를 반환
def get_smallest_node():
min_value = INF
index = 0 # 가장 최단 거리가 짧은 노드(인덱스)
for i in range(1, n + 1):
if distance[i] < min_value and not visited[i]:
min_value = distance[i]
index = i
return index
def dijkstra(start):
# 시작 노드에 대해서 초기화
distance[start] = 0
visited[start] = True
for j in graph[start]:
distance[j[0]] = j[1]
# 시작 노드를 제외한 전체 n - 1개의 노드에 대해 반복
for i in range(n - 1):
# 현재 최단 거리가 가장 짧은 노드를 꺼내서, 방문 처리
now = get_smallest_node()
# 현재 노드와 연결된 다른 노드를 확인
for j in graph[now]:
cost = distance[now] + j[1]
# 현재 노드를 거쳐서 다른 노드로 이동하는 거리가 더 짧은 경우
if cost < distance[j[0]]:
distance[j[0]] = cost
# 다익스트라 알고리즘을 수행
dijkstra(start)
# 모든 노드로 가기 위한 최단 거리를 출력
for i in range(1, n + 1):
# 도달할 수 없는 경우, 무한(INFINITY)이라고 출력
if distance[i] == INF:
print("INFINITY")
# 도달할 수 있는 경우 거리를 출력
else:
print(distance[i])
간단한 구현 코드의 성능 분석
- 총 O(V)번에 걸쳐서 최단 거리가 가장 짧은 노드를 매번 선형 탐색
- 따라서 전체 시간 복잡도는 O(V²)
- 일반적으로 코딩 테스트의 최단 경로 문제에서 전체 노드의 개수가 5,000개 이하라면 해결 가능
- 하지만, 노드의 개수가 10,000개를 넘어가는 문제라면? --> 더욱 효율적인 코드가 필요
- 우선순위가 가장 높은 데이터를 가장 먼저 삭제하는 자료구조
- Python, C++, Java를 포함한 대부분의 프로그래밍 언어에서 표준 라이브러리 형태로 지원
힙(Heap)
- 우선순위 큐(Priority Queue)를 구현하기 위해 사용하는 자료구조 중 하나
- 최소 힙(Min Heap)과 최대 힙(Max Heap)이 있음
- 다익스트라 최단 경로 알고리즘을 포함해 다양한 알고리즘에서 사용
우선순위 큐 구현 방식 | 삽입 시간 | 삭제 시간 |
---|---|---|
리스트 | O(1) | O(N) |
힙 (Heap) | O(logN) | O(logN) |
# 힙 라이브러리 사용 예제: 최소 힙 (python)
import heapq
# 오름차순 힙 정렬 (Heap Sort)
dep heapsort(iterable):
h = []
result = []
# 모든 원소를 차례대로 힙에 삽입
for value in iterable:
heapq.heappush(h, value)
# 힙에 삽입된 모든 원소를 차례대로 꺼내어 담기
for i in range(len(h)):
result.append(heapq.heappop(h))
return result
result = heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
print(result)
# output: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# 힙 라이브러리 사용 예제: 최대 힙 (python)
import heapq
# 내림차순 힙 정렬 (Heap Sort)
dep heapsort(iterable):
h = []
result = []
# 모든 원소를 차례대로 힙에 삽입
for value in iterable:
heapq.heappush(h, -value)
# 힙에 삽입된 모든 원소를 차례대로 꺼내어 담기
for i in range(len(h)):
result.append(-heapq.heappop(h))
return result
result = heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
print(result)
# output: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
- 단계마다 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드를 선택하기 위해 힙(Heap) 자료구조 이용
- 다익스트라 알고리즘이 동작하는 기본 원리는동일
# 다익스트라 알고리즘: 개선된 구현 방법 (Python)
import heapq
import sys
input = sys.stdin.readline
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정
# 노드의 개수, 간선의 개수를 입력받기
n, m = map(int, input().split())
# 시작 노드 번호를 입력받기
start = int(input())
# 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트를 만들기
graph = [[] for i in rnage(n + 1)]
# 최단 거리 테이블을 모두 무한으로 초기화
distance = [INF] * (n + 1)
# 모든 간선 정보를 입력받기
for _ in range(m):
a, b, c = map(int, input().split())
# a번 노드에서 b번 노드로 가는 비용이 c라는 의미
graph[a].append((b, c))
def dijkstra(start):
q = []
# 시작 노드로 가기 위한 최단 경로는 0으로 설정하여, 큐에 삽입
heapq.heappush(q, (0, start))
distance[start] = 0
while q: # 큐가 비어있지 않다면
# 가장 최단 거리가 짧은 노드에 대한 정보 꺼내기
dist, now = heapq.heappop(q)
# 현재 노드가 이미 처리된 적이 있는 노드라면 무시
if distance[now] < dist:
continue
# 현재 노드와 연결된 다른 인접한 노드들을 확인
for i in graph[now]:
cost = dist + i[1]
# 현재 노드를 거쳐서, 다른 노드로 이동하는 거리가 더 짧은 경우
if cost < distance[i[0]]:
distacne[i[0]] = cost
heapq.heappush(q, (cost, i[0]))
# 다익스트라 알고리즘을 수행
dijkstra(start)
# 모든 노드로 가기 위한 최단 거리를 출력
for i in range(1, n + 1):
# 도달할 수 없는 경우, 무한(INFINITY)이라고 출력
if distance[i] == INF:
print("INFINITY")
# 도달할 수 있는 경우 거리를 출력
else:
print(distance[i])
개선된 구현 코드의 성능 분석
- 힙 자료구조를 이용하는 다익스트라 알고리즘의 시간 복잡도는 (OElogV)
- 노드를 하나씩 꺼내 검사하는 반복문(while문)은 노드의 개수 V 이상의 횟수로는 처리되지 않음
- 결과적으로 현재 우선수위 큐에서 꺼낸 노드와 연결된 다른 노드들을 확인하는 총횟수는 최대 간선의 개수(E)만큼 연산이 수행될 수 있음
- 직관적으로 전체 과정은 E개의 원소를 우선순위 큐에 넣었다가 모두 빼내는 연산과 매우 유사
- 시간 복잡도를 O(ElogE)로 판단할 수 있음
- 중복 간선을 포함하지 않는 경우에 이를 O(ElogV)로 정리 가능