ws2812b led pwm dma print

임시온·2023년 10월 20일
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
//#include <stdlib.h>
//#include <string.h>
#include <math.h>
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim3;
DMA_HandleTypeDef hdma_tim1_ch1;
DMA_HandleTypeDef hdma_tim3_ch1_trig;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_TIM3_Init(void);
static void MX_TIM1_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
#define LED_MAX 50
#define USE_BRIGHTNESS 1

uint8_t LED_Data[LED_MAX][4];
uint8_t LED_Mod[LED_MAX][4]; // led brightness

int datasentflag=0;

void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
{
	HAL_TIM_PWM_Stop_DMA(&htim1, TIM_CHANNEL_1);
	datasentflag=1;
}

void Set_LED (int LEDnum, int Red, int Green, int Blue)
{
	LED_Data[LEDnum][0] = LEDnum;
	LED_Data[LEDnum][1] = Red;
	LED_Data[LEDnum][2] = Green;
	LED_Data[LEDnum][3] = Blue;
}

#define PI 3.14159265

void Set_Brightness (int brightness) // 0-45
// 255 -> 100%, 127 -> 50%, 63 -> 25%
{
#if USE_BRIGHTNESS

	if (brightness > 45) brightness = 45;
	for ( int i = 0; i < LED_MAX; i++)
	{
		LED_Mod[i][0] = LED_Data[i][0];
		for ( int j = 1; j < 4 ; j++ )
		{
			float angle = 90-brightness;
			angle = angle*PI/180;
			LED_Mod[i][j] = (LED_Data[i][j])/(tan(angle));
		}
	}

#endif

}

uint16_t pwmData[(24*LED_MAX)+50]; // 24=>8+8+8, *LED_MAX(num), 50 : reset code

void WS2812_Send ( void )
{
	uint32_t indx = 0;
	uint32_t color;

	for ( int i =0 ; i < LED_MAX; i++ )
	{
		// LED_Mod[i][1] = RED, LED_Mod[i][2] = GREEN, LED_Mod[i][3] = BLUE
		color = ((LED_Mod[i][1]<<16) | (LED_Mod[i][2]<<8) | (LED_Mod[i][3]));

		for ( int i = 23; i >= 0; i-- )
		{
			// color bit checking and &
			if ( color&(1<<i)) // bit 1
			{
				pwmData[indx] = 60;
			}
			else pwmData[indx] = 30; // bit 0

			indx++;
		}

	}

	// WS2812B reset code is 50us
	for ( int i =0; i< 50; i++ )
	{
		pwmData[indx] = 0;
		indx++;
	}

	HAL_TIM_PWM_Start_DMA(&htim1, TIM_CHANNEL_1, (uint32_t *)pwmData, indx);
	while (!datasentflag){};
	datasentflag = 0;
}

uint16_t effStep = 0;

uint8_t rainbow_effect_right() {
  float factor1, factor2;
  uint16_t ind;
  for(uint16_t j=0;j<10;j++) {
    ind = 49 - (int16_t)(effStep - j * 1) % 49;
    switch((int)((ind % 49) / 16.333333333333332)) {
      case 0: factor1 = 1.0 - ((float)(ind % 49 - 0 * 16.333333333333332) / 16.333333333333332);
              factor2 = (float)((int)(ind - 0) % 49) / 16.333333333333332;
              Set_LED(j, 255 * factor1 + 0 * factor2, 0 * factor1 + 255 * factor2, 0 * factor1 + 0 * factor2);
              Set_Brightness(10);
              WS2812_Send();
              break;
      case 1: factor1 = 1.0 - ((float)(ind % 49 - 1 * 16.333333333333332) / 16.333333333333332);
              factor2 = (float)((int)(ind - 16.333333333333332) % 49) / 16.333333333333332;
              Set_LED(j, 0 * factor1 + 0 * factor2, 255 * factor1 + 0 * factor2, 0 * factor1 + 255 * factor2);
              Set_Brightness(10);
              WS2812_Send();
              break;
      case 2: factor1 = 1.0 - ((float)(ind % 49 - 2 * 16.333333333333332) / 16.333333333333332);
              factor2 = (float)((int)(ind - 32.666666666666664) % 49) / 16.333333333333332;
              Set_LED(j, 0 * factor1 + 255 * factor2, 0 * factor1 + 0 * factor2, 255 * factor1 + 0 * factor2);
              Set_Brightness(10);
              WS2812_Send();
              break;
    }
  }
  if(effStep >= 49) {effStep = 0; return 0x03; }
  else effStep++;
  return 0x01;
}

uint8_t rainbow_effect_left() {
  float factor1, factor2;
  uint16_t ind;
  for(uint16_t j=0;j<50;j++) {
    ind = effStep + j * 0.9629629629629629;
    switch((int)((ind % 286) / 95.33333333333333)) {
      case 0: factor1 = 1.0 - ((float)(ind % 286 - 0 * 95.33333333333333) / 95.33333333333333);
              factor2 = (float)((int)(ind - 0) % 286) / 95.33333333333333;
              Set_LED(j, 255 * factor1 + 0 * factor2, 0 * factor1 + 255 * factor2, 0 * factor1 + 0 * factor2);
              Set_Brightness(10);
              WS2812_Send();
              break;
      case 1: factor1 = 1.0 - ((float)(ind % 286 - 1 * 95.33333333333333) / 95.33333333333333);
              factor2 = (float)((int)(ind - 95.33333333333333) % 286) / 95.33333333333333;
              Set_LED(j, 0 * factor1 + 0 * factor2, 255 * factor1 + 0 * factor2, 0 * factor1 + 255 * factor2);
              Set_Brightness(10);
              WS2812_Send();
              break;
      case 2: factor1 = 1.0 - ((float)(ind % 286 - 2 * 95.33333333333333) / 95.33333333333333);
              factor2 = (float)((int)(ind - 190.66666666666666) % 286) / 95.33333333333333;
              Set_LED(j, 0 * factor1 + 255 * factor2, 0 * factor1 + 0 * factor2, 255 * factor1 + 0 * factor2);
              Set_Brightness(10);
              WS2812_Send();
              break;
    }
  }
  if(effStep >= 286) {effStep = 0; return 0x03; }
  else effStep++;
  return 0x01;
}

/*
 * version 1
void send ( int Green, int Red, int Blue)
{
	// data
	uint32_t data = (Green<<16) | (Red<<8) | Blue;

	for ( int i = 23; i >= 0; i-- )
	{
		if ( data&(1<<i)) pwmData[i] = 60; // code 1

		else pwmData[i] = 30; // code 0
	}

	// pwm data send !
	HAL_TIM_PWM_Start_DMA(&htim1, TIM_CHANNEL_1, (uint32_t *)pwmData, 24);
}
*/
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_TIM3_Init();
  MX_TIM1_Init();
  /* USER CODE BEGIN 2 */

//  send (5, 255, 101);

//  for ( int i = 0; i < 10; i++ )
//  {
//	  Set_LED(i, 255, 255, 0);
//  }
//
  Set_LED(0,255,0,0);
  Set_Brightness(10);
  WS2812_Send();

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
	  /*
	  for ( int i = 0 ; i <= 45; i++ )
	  {
		  Set_LED(i, rand(), rand(), rand());
		  Set_Brightness(i);
		  WS2812_Send();
		  HAL_Delay(50);
	  }

	  for ( int i = 45 ; i >= 0; i-- )
	  {
		  Set_Brightness(i);
		  WS2812_Send();
		  HAL_Delay(50);
	  }*/
//	  rainbow_effect_right();
	  rainbow_effect_left();
	  HAL_Delay (30);
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 25;
  RCC_OscInitStruct.PLL.PLLN = 144;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief TIM1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM1_Init(void)
{

  /* USER CODE BEGIN TIM1_Init 0 */

  /* USER CODE END TIM1_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};
  TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};

  /* USER CODE BEGIN TIM1_Init 1 */

  /* USER CODE END TIM1_Init 1 */
  htim1.Instance = TIM1;
  htim1.Init.Prescaler = 0;
  htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim1.Init.Period = 90-1;
  htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim1.Init.RepetitionCounter = 0;
  htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
  sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
  sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
  sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
  sBreakDeadTimeConfig.DeadTime = 0;
  sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
  sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
  sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
  if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM1_Init 2 */

  /* USER CODE END TIM1_Init 2 */
  HAL_TIM_MspPostInit(&htim1);

}

/**
  * @brief TIM3 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM3_Init(void)
{

  /* USER CODE BEGIN TIM3_Init 0 */

  /* USER CODE END TIM3_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};

  /* USER CODE BEGIN TIM3_Init 1 */

  /* USER CODE END TIM3_Init 1 */
  htim3.Instance = TIM3;
  htim3.Init.Prescaler = 0;
  htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim3.Init.Period = 90;
  htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_PWM_Init(&htim3) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM3_Init 2 */

  /* USER CODE END TIM3_Init 2 */
  HAL_TIM_MspPostInit(&htim3);

}

/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{

  /* DMA controller clock enable */
  __HAL_RCC_DMA1_CLK_ENABLE();
  __HAL_RCC_DMA2_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA1_Stream4_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Stream4_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Stream4_IRQn);
  /* DMA2_Stream1_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA2_Stream1_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA2_Stream1_IRQn);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOE_CLK_ENABLE();

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

PE9에 timer1의 채널을 걸어서 출력을 pwm 출력을 함

ws2812b led에 Rainbow 색 나타내는 코드 입니다.

0개의 댓글