Given an array of positive integers nums, return the maximum possible sum of an ascending subarray in nums.
A subarray is defined as a contiguous sequence of numbers in an array.
A subarray [numsl, numsl+1, ..., numsr-1, numsr] is ascending if for all i where l <= i < r, numsi < numsi+1. Note that a subarray of size 1 is ascending.
Example 1:
Input: nums = [10,20,30,5,10,50]
Output: 65
Explanation: [5,10,50] is the ascending subarray with the maximum sum of 65.
Example 2:
Input: nums = [10,20,30,40,50]
Output: 150
Explanation: [10,20,30,40,50] is the ascending subarray with the maximum sum of 150.
Example 3:
Input: nums = [12,17,15,13,10,11,12]
Output: 33
Explanation: [10,11,12] is the ascending subarray with the maximum sum of 33.
Example 4:
Input: nums = [100,10,1]
Output: 100
Constraints:
1 <= nums.length <= 100
1 <= nums[i] <= 100
풀이 1 Runtime : 72ms, Memory : 39.3MB
var maxAscendingSum = function(nums) {
if(nums.length === 1) return nums[0];
let tempSum = nums[0];
let arr = [];
for(let i = 1; i < nums.length; i++){
if(nums[i] > nums[i-1]){
tempSum += nums[i]
}else{
arr.push(tempSum);
tempSum = nums[i];
}
if(i === nums.length -1){
arr.push(tempSum);
}
}
arr.sort((a,b) => a-b);
return arr[arr.length-1];
};
풀이 2(주석 친 부분을 풀면 최대값만 알 수 있는게 아니라 배열도 알 수 있음.) Runtime : 72ms, Memory : 38.9MB
var maxAscendingSum = function(nums) {
let tempSum = nums[0];
let tempArr = [nums[0]];
let result = [];
for(let i = 1; i < nums.length; i++){
if(nums[i] > nums[i-1]){
tempSum += nums[i];
tempArr.push(nums[i]);
}else{
result.push({
tempSum,
tempArr
})
tempSum = nums[i];
tempArr = [nums[i]];
}
}
result.push({
tempSum,
tempArr
})
let max = result[0].tempSum
// let arr = result[0].tempArr
for(let i = 0; i < result.length; i++){
if(result[i].tempSum > max){
max = result[i].tempSum
// arr = result[i].tempArr
}
}
return max;
};