1937년 Collatz란 사람에 의해 제기된 이 추측은, 주어진 수가 1이 될 때까지 다음 작업을 반복하면, 모든 수를 1로 만들 수 있다는 추측입니다. 작업은 다음과 같습니다.
```1-1. 입력된 수가 짝수라면 2로 나눕니다. 1-2. 입력된 수가 홀수라면 3을 곱하고 1을 더합니다. 2. 결과로 나온 수에 같은 작업을 1이 될 때까지 반복합니다. ```예를 들어, 주어진 수가 6이라면 6 → 3 → 10 → 5 → 16 → 8 → 4 → 2 → 1 이 되어 총 8번 만에 1이 됩니다. 위 작업을 몇 번이나 반복해야 하는지 반환하는 함수, solution을 완성해 주세요. 단, 주어진 수가 1인 경우에는 0을, 작업을 500번 반복할 때까지 1이 되지 않는다면 –1을 반환해 주세요.
num
n | result |
---|---|
6 | 8 |
16 | 4 |
626331 | -1 |
입출력 예 #1
문제의 설명과 같습니다.
입출력 예 #2
16 → 8 → 4 → 2 → 1 이 되어 총 4번 만에 1이 됩니다.
입출력 예 #3
626331은 500번을 시도해도 1이 되지 못하므로 -1을 리턴해야 합니다.
※ 공지 - 2022년 6월 10일 다음과 같이 지문이 일부 수정되었습니다.
def solution(num):
answer = 0
while True:
if num == 1:
return 0
if answer == 500:
answer = -1
break
if num % 2 == 0:
num = num // 2
else:
num = num * 3 + 1
answer += 1
if num == 1:
break
return answer
https://school.programmers.co.kr/learn/courses/30/lessons/12943?language=python3