Clean Code #12 창발성

Bard·2021년 3월 21일
0

Clean Code Summary

목록 보기
12/14
post-thumbnail

창발성 : 창발(創發)또는 떠오름 현상은 하위 계층(구성 요소)에는 없는 특성이나 행동이 상위 계층(전체 구조)에서 자발적으로 돌연히 출현하는 현상이다. 또한 불시에 솟아나는 특성을 창발성(영어: emergent property) 또는 이머전스(영어: emergence)라고도 부른다.

창발적 설계로 깔끔한 코드를 구현하자

켄트 백은 다음 규칙을 따르면 설계는 ‘단순하다’고 말한다

  • 모든 테스트를 실행한다
  • 중복을 없앤다
  • 프로그래머 의도를 표현한다
  • 클래스와 메서드 수를 최소로 줄인다

위 목록은 중요도 순이다.

단순한 설계 규칙 1: 모든 테스트를 실행하라

테스트를 철저히 거쳐 모든 테스트 케이스를 항상 통과하는 시스템은 ’테스트가 가능한 시스템’이다. 당연하지만 중요한 말이다. 테스트가 불가능한 시스템은 검증도 불가능하다. 논란의 여지는 있지만, 검증이 불가능한 시스템은 절대 출시하면 안 된다.

다행스럽게도, 테스트가 가능한 시스템을 만들려고 애쓰면 설계 품질이 더불어 높아진다. 크기가 작고 목적 하나만 수행하는 클래스가 나온다. SRP를 준수하는 클래스는 테스트가 훨씬 더 쉽다. 우리가 테스트를 더 많이 작성하면 할수록 프로그래머가 더 테스트하기 간단하게 코드를 작성할 수 있게 도와준다. 따라서 철저한 테스트가 가능한 시스템을 만들면 더 나은 설계가 얻어진다.

테스트 케이스를 많이 작성할수록 개발자는 DIP와 같은 원칙을 적용하고 의존성 주입(Dependency Injection), 인터페이스, 추상화 등과 같은 도구를 사용해 결합도를 낮춘다. 따라서 설계 품질은 더욱 높아진다.

단순한 설계규칙 2~4: 리팩터링

리팩터링 단계에서는 소프트웨어 설계 품질을 높이는 기법이라면 무엇이든 적용해도 괜찮다. 응집도를 높이고, 결합도를 낮추고, 관심사를 분리하고, 시스템 관심사를 모듈로 나누고, 함수와 클래스 크기를 줄이고, 더 나은 이름을 선택하는 등 다양한 기법을 동원한다. 또한 이 단계는 단순한 설계 규칙 중 나머지 3개를 적용해 중복 제거, 프로그래머 의도 표현, 클래스 메서드 축소 등등을 할 수 있다.

중복을 없애라

깔끔한 시스템을 만들려면 단 몇 줄이라도 중복을 제거하겠다는 의지가 필요하다. 다음 코드를 살펴보자.

public void scaleToOneDimension(float desiredDimension, float imageDimension) {
  if (Math.abs(desiredDimension - imageDimension) < errorThreshold)
    return;
  float scalingFactor = desiredDimension / imageDimension;
  scalingFactor = (float)(Math.floor(scalingFactor * 100) * 0.01f);
  
  RenderedOpnewImage = ImageUtilities.getScaledImage(image, scalingFactor, scalingFactor);
  image.dispose();
  System.gc();
  image = newImage;
}

public synchronized void rotate(int degrees) {
  RenderedOpnewImage = ImageUtilities.getRotatedImage(image, degrees);
  image.dispose();
  System.gc();
  image = newImage;
}

scaleToOneDimension 메서드와 rotate 메서드를 살펴보면 일부 코드가 동일하다. 다음과 같이 코드를 정리해 중복을 제거한다.

public void scaleToOneDimension(float desiredDimension, float imageDimension) {
  if (Math.abs(desiredDimension - imageDimension) < errorThreshold)
    return;
  float scalingFactor = desiredDimension / imageDimension;
  scalingFactor = (float) Math.floor(scalingFactor * 10) * 0.01f);
  replaceImage(ImageUtilities.getScaledImage(image, scalingFactor, scalingFactor));
}

public synchronized void rotate(int degrees) {
  replaceImage(ImageUtilities.getRotatedImage(image, degrees));
}

private void replaceImage(RenderedOpnewImage) {
  image.dispose();
  System.gc();
  image = newImage;
}

위 replaceImage()를 리팩토링했다. 아주 적은 양이지만 공통적인 코드를 새 메서드로 뽑고 보니 클래스가 SRP를 위반한다. 그러므로 새로 만든 replaceImage 메서드를 다른 클래스로 옮겨도 좋겠다. 그러면 새 메서드의 가시성이 높아지고, 따라서 다른 팀원이 새 메서드를 좀 더 추상화해 다른 맥락에서 재사용할 기회를 포착할지도 모른다.

이런 ‘소규모 재사용’은 시스템 복잡도를 극적으로 줄여준다. 소규모 재사용을 제대로 익혀야 대규모 재사용이 가능하다.

TEMPLATE METHOD 패턴은 고차원 중복을 제거할 목적으로 자구 사용하는 기법이다.

public class VacationPolicy {
  public void accrueUSDDivisionVacation() {
    // 지금까지 근무한 시간을 바탕으로 휴가 일수를 계산하는 코드
    // ...
    // 휴가 일수가 미국 최소 법정 일수를 만족하는지 확인하는 코드
    // ...
    // 휴가 일수를 급여 대장에 적용하는 코드
    // ...
  }
  
  public void accrueEUDivisionVacation() {
    // 지금까지 근무한 시간을 바탕으로 휴가 일수를 계산하는 코드
    // ...
    // 휴가 일수가 유럽연합 최소 법정 일수를 만족하는지 확인하는 코드
    // ...
    // 휴가 일수를 급여 대장에 적용하는 코드
    // ...
  }
}

최소 법정 일수를 계산하는 코드만 제외하면 두 메서드는 거의 동일하다. 최소 법정 일수를 계산하는 알고리즘은 직원 유형에 따라 살짝 변한다. 여기에 TEMPLATE METHOD 패턴을 적용해 눈에 들어오는 중복을 제거한다.

abstract public class VacationPolicy {
  public void accrueVacation() {
    caculateBseVacationHours();
    alterForLegalMinimums();
    applyToPayroll();
  }
  
  private void calculateBaseVacationHours() { /* ... */ };
  abstract protected void alterForLegalMinimums();
  private void applyToPayroll() { /* ... */ };
}

public class USVacationPolicy extends VacationPolicy {
  @Override protected void alterForLegalMinimums() {
    // 미국 최소 법정 일수를 사용한다.
  }
}

public class EUVacationPolicy extends VacationPolicy {
  @Override protected void alterForLegalMinimums() {
    // 유럽연합 최소 법정 일수를 사용한다.
  }
}

하위 클래스는 중복되지 않는 정보만 제공해 accrueVacation 알고리즘에서 빠진 ‘구멍’을 메운다.

표현하라

코드는 개발자의 의도를 분명히 표현해야 한다. 개발자가 코드를 명백하게 짤수록 다른 사람이 그 코드를 이해하기 쉬워진다. 그래야 결함이 줄어들고 유지보수 비용이 적게 든다.
우선, 좋은 이름을 선택한다. 이름과 기능이 완전히 딴판인 클래스나 함수로 개발자를 놀라게 해서는 안 된다.

둘째, 함수와 클래스 크기를 가능한 한 줄인다. 작은 클래스와 작은 함수는 이름 짓기도 쉽고, 구현하기도 쉽고, 이해하기도 쉽다.

셋째, 표준 명칭을 사용한다. 예를 들어, 디자인 패턴은 의사소통과 표현력 강화가 주요 목적이다. 클래스가 COMMAND나 VISITOR와 같은 표준 패턴을 사용해 구현된다면 클래스 이름에 패턴 이름을 넣어준다. 그러면 다른 개발자가 클래스 설계 의도를 이해하기 쉬워진다.

넷째, 단위 테스트 케이스를 꼼꼼히 작성한다. 테스트 케이스는 소위 ‘예제로 보여주는 문서’다. 다시 말해, 잘 만든 테스트 케이스를 읽어보면 클래스 기능이 한눈에 들어온다.

클래스와 메서드의 수를 최소로 줄여라

중복을 제거하고, 의도를 표현하고 SRP를 준수한다는 기본적인 개념도 극단으로 치달으면 득보다 실이 많아진다. 그래서 이 규칙은 함수와 클래스 수를 가능한 줄이라고 제안한다.

가능한 독단적인 견해는 멀리하고 실용적인 방식을 택한다.

목표는 함수와 클래스 크기를 작게 유지하면서 동시에 시스템 크기도 작게 유지하는 데 있다. 하지만 이 규칙은 간단한 설계 규칙 네 개 중 우선순위가 가장 낮다. 다시 말해, 클래스와 함수 수를 줄이는 작업도 중요하지만, 테스트 케이스를 만들고 중복을 제거하고 의도를 표현하는 작업이 더 중요하다는 뜻이다.

결론

경험을 대신할 단순한 개발 기법이 있을까? 당연히 없다. 하지만 이 장, 아니 이 책에서 소개하는 기법은 저자들이 수십 년 동안 쌓은 경험의 정수다. 단순한 설계 규칙을 따른다면 (오랜 경험 후에야 익힐) 우수한 기법과 원칙을 단번에 활용할 수 있다.

profile
Recently broke up with FE engineering

0개의 댓글