[4] Brownian Motion

정창현·2023년 10월 17일

Financial Mathematics

목록 보기
4/5

1. Stochastic process

(1) Stochastic process

For a probability space (Ω,F,P)(\Omega, \mathcal{F}, P), A stochastic process {Xt}t[0,T]\{X_t\}_{t\in[0,T]} is a parametrized collection of random variables. and it has two explantory variables which are time tt and individual experiment ww.

For each t[0,T]t\in[0,T],   Xt:ΩRX_t : \Omega \rightarrow \R is a random variable. and a random variable Xt(w)X_t(w) has its own distribution at each time tt.

For each wΩw \in \Omega,   Xt:[0,T]RnX_t : [0,T] \rightarrow \R^n is a trajectory in Rn\R^n and each ww produces a trajectory Xt(w)X_t(w).


(2) Generating FT\mathcal{F}_T & PP

We may consider Ω\Omega as a subset of {\{ all functions : [0,T]Rn[0,T] \rightarrow \R^n }\}.

1) Our basic sets are of the form

(a1<Xt1<b1,a2<Xt2<b2,,ak<Xtk<bk)(a_1<X_{t_1}<b_1,a_2<X_{t_2}<b_2,\cdots,a_k<X_{t_k}<b_k)

={wΩ:(a1<Xt1(w)<b1,a2<Xt2(w)<b2,,ak<Xtk(w)<bk)}=\{w\in\Omega : (a_1<X_{t_1}(w)<b_1,a_2<X_{t_2}(w)<b_2,\cdots,a_k<X_{t_k}(w)<b_k) \} for some {t1,t2,,tk}[0,T]\{t_1, t_2, \cdots, t_k\}\in[0,T] and open intervals (a1,b1),(a2,b2),,(ak,bk)(a_1,b_1), (a_2,b_2), \cdots, (a_k,b_k)

={=\{ all trajectories passing through FjF_j at tjt_j,   j=1,2,,kj = 1, 2, \cdots, k }\}

2) We can assign probability to basic sets by

P(a1<Xt1<b1,a2<Xt2<b2,,ak<Xtk<bk)P(a_1<X_{t_1}<b_1,a_2<X_{t_2}<b_2,\cdots,a_k<X_{t_k}<b_k)





2. Brownian motion

It is also called Wiener process which is the most important example of stochastic process.

Suppos p(t,x,y)p(t,x,y) is a pdf for N(x,t)N(x,t).
p(t,x,y)=12πte(xy)22tp(t,x,y) = \frac{1}{\sqrt{2\pi t}}e^{-\frac{(x-y)^2}{2t}}   with x,yR, t>0x,y \in \R, \ t>0

We can assign probabilities to the basic sets by
P(a1<Wt1<b1,a2<Wt2<b2,,ak<Wtk<bk)P(a_1<W_{t_1}<b_1,a_2<W_{t_2}<b_2,\cdots,a_k<W_{t_k}<b_k)
=akbkak1bk1a1b1p(t1,0,x1)p(t2t1,x1,x2)p(tktk1,xk1,xk)dx1dx2dxk=\int_{a_k}^{b_k}\int_{a_{k-1}}^{b_{k-1}}\cdots\int_{a_1}^{b_1}p(t_1,0,x_1)p(t_2-t_1,x_1,x_2) \cdots p(t_k-t_{k-1},x_{k-1},x_k) dx_1dx_2\cdots dx_k



(2) Definition of Weiner process

A (one-dimensional) stochastic process {W(t):ΩR}t[0,T]\{W(t):\Omega\rightarrow\R\}_{t\in[0,T]} is called a Wiener process if

  • W(t)W(t) generates a continuous trajectory with W(0)=0W(0) = 0
  • The process W(t)W(t) has independent increments, i.e.
    for any t1<t2t3<t4t_1<t_2\leq t_3 <t_4,   W(t4)W(t3)W(t_4)-W(t_3) and W(t2)W(t1)W(t_2)-W(t_1) are independent.
  • For t2>t1t_2>t_1,   W(t2)W(t1)N(0,t2t1)W(t_2)-W(t_1) \sim N(0,t_2-t_1)

We can prove these properties from (1) notations.


profile
안녕하세요. 반갑습니다. 모켈레-음베음베

0개의 댓글