훈련에 적합하다고 판단되는 데이터 20장 선정 후 훈련 데이터 폴더에 복사
훈련 : 검증 = 0.85 : 0.15 = 17 : 3
| Backbone Model | Resnet50 |
| Image Shape | (224 x 224 x 3) |
| Mask Shape | (224 x 224 x 2) |
| Number of output channels | 2 (0 – background, 1 – abnormal) |
| Number of Epochs Trained | 50 |
| Batch Size | 3 |
| Optimizer | Adam |
| Learning Rate | 0.0001 |
| Loss Function/s | Binary Cross entropy Intersection over union (BCE + IoU) |
| Evaluation Metric | Intersection over Union (IoU) |
python main_train.py --epochs 50 --batch 3
python main_test.py --input ../input/Turf_Dataset/valid_images/
| ori_data | valid_data |
|---|---|
![]() | ![]() |
.
| ori_data | valid_data |
|---|---|
![]() | ![]() |
python main_test.py --input ../input/Turf_Dataset/test_images/
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation