img dataset
label dataset
train : val = 9 : 1 6881 : 600
mkdir eval train
mkdir eval/Annotations eval/ImageSets eval/JPEGImages
mv data_object_image_2/training/image_2/*{006881..007480}.png eval/JPEGImages/
mv kitti_training_annotations_yolo/*{006881..007480}.txt kitti_dataset/eval/Annotations/
mkdir train/Annotations train/ImageSets train/JPEGImages
mv data_object_image_2/training/image_2/*.png train/JPEGImages/
mv kitti_training_annotations_yolo/*.txt kitti_dataset/train/Annotations/
find ./train/Annotations/ -type f -name "*.txt" > ./train/ImageSets/train.txt
find ./eval/Annotations/ -type f -name "*.txt" > ./eval/ImageSets/eval.txt
type | 클래스 |
truncated | 이미지 밖으로 나간 정도 |
occluded | 다른 객체에 가려진 정도 |
alpha | 객체 각도 |
bbox | x_min y_min x_max y_max |
dimensions | |
location | |
rotation_y | |
score |
├── Annotations
├── ImageSets
└── JPEGImages
class c_x c_y w h
python main.py --mode train --cfg yolov3_kitti.cfg
epoch_5 000007
epoch_7 000335
pip install pyqt5-tools pyqt5
pip uninstall pyqt5-tools pyqt5 -y
KITTI dataset
Download left color images of object data set (12 GB)
Download training labels of object data set (5 MB)
convert2Yolo
imgaug