nn.Module
Logistic Regression의 Hypothesis
Logistic Regression의 Cost
Logistic Regression의 Hypothesis 구현
exp는 torch.exp()
를 이용한다. (torch.sigmoid()
를 사용하면 수월하다.)
가중치 계산은 matmul()
메소드를 이용한다.
import torch
W = torch.zeros((2, 1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
x_data = [[1, 2], [2, 3], [3, 1], [4, 3], [5, 3], [6, 2]]
y_data = [[0], [0], [0], [1], [1], [1]]
x_train = torch.FloatTensor(x_data) # (6, 2)
y_train = torch.FloatTensor(y_data) # (6, 1)
hypothesis = 1 / (1 + torch.exp(-(x_train.matmul(W) + b)))
print(hypothesis)
print(hypothesis.shape)
'''
tensor([[0.5000],
[0.5000],
[0.5000],
[0.5000],
[0.5000],
[0.5000]], grad_fn=<MulBackward0>)
torch.Size([6, 1])
'''
Logistic Regression의 Cost 구현
torch.log()
와 torch.mean()
을 사용한다.
torch.nn.functional.binary_cross_entropy()
를 사용할 수 있다.
import torch
import torch.nn.functional as F
losses = -(y_train*torch.log(hypothesis) + (1-y_train)*torch.log(1-hypothesis))
print(losses)
cost = losses.mean()
print(cost)
print(F.binary_cross_entropy(hypothesis, y_train))
'''
tensor([[0.6931],
[0.6931],
[0.6931],
[0.6931],
[0.6931],
[0.6931]], grad_fn=<NegBackward>)
tensor(0.6931, grad_fn=<MeanBackward0>)
tensor(0.6931, grad_fn=<BinaryCrossEntropyBackward>)
'''
import torch
import torch.nn.functional as F
import torch.optim as optim
x_data = [[1, 2], [2, 3], [3, 1], [4, 3], [5, 3], [6, 2]] # (6, 2)
y_data = [[0], [0], [0], [1], [1], [1]]
x_train = torch.FloatTensor(x_data)
y_train = torch.FloatTensor(y_data)
# 모델 초기화
W = torch.zeros((2, 1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
# optimizer 설정
optimizer = optim.SGD([W, b], lr=1)
nb_epochs = 1000
for epoch in range(nb_epochs+1):
# cost 계산
hypothesis = torch.sigmoid(x_train.matmul(W)+b)
cost = F.binary_cross_entropy(hypothesis, y_train)
# weight 갱신
optimizer.zero_grad()
cost.backward()
optimizer.step()
# cost 출력
if epoch % 100 == 0:
print('Epoch {:4d}/{} Cost : {:.6f}'.format(
epoch, nb_epochs, cost.item()
))
'''
Epoch 0/1000 Cost : 0.693147
Epoch 100/1000 Cost : 0.134722
Epoch 200/1000 Cost : 0.080643
Epoch 300/1000 Cost : 0.057900
Epoch 400/1000 Cost : 0.045300
Epoch 500/1000 Cost : 0.037261
Epoch 600/1000 Cost : 0.031673
Epoch 700/1000 Cost : 0.027556
Epoch 800/1000 Cost : 0.024394
Epoch 900/1000 Cost : 0.021888
Epoch 1000/1000 Cost : 0.019852
'''
Logistic Regression의 Evaluation
hypothesis의 값이 0.5이상이면 True
로 본다.
y_train
과 비교하여 correct_prediction
에 저장한다.
hypothesis = torch.sigmoid(x_train.matmul(W)+b)
print(hypothesis[:5])
prediction = hypothesis >= torch.FloatTensor([0.5])
print(prediction[:5])
correct_prediction = prediction.float() == y_train
print(correct_prediction[:5])
'''
tensor([[2.7648e-04],
[3.1608e-02],
[3.8977e-02],
[9.5622e-01],
[9.9823e-01]], grad_fn=<SliceBackward>)
tensor([[False],
[False],
[False],
[ True],
[ True]])
tensor([[True],
[True],
[True],
[True],
[True]])
'''
nn.Module
상속받아 사용한다.class BinaryClassifier(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(2, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
return self.sigmoid(self.linear(x))
model = BinaryClassifier()
nn.Module
with full codeimport torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class BinaryClassifier(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(2, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
return self.sigmoid(self.linear(x))
model = BinaryClassifier()
optimizer = optim.SGD(model.parameters(), lr=1)
nb_epochs = 100
for epoch in range(nb_epochs+1):
# h(x)
hypothesis = model(x_train)
# cost
cost = F.binary_cross_entropy(hypothesis, y_train)
# 갱신
optimizer.zero_grad()
cost.backward()
optimizer.step()
if epoch % 10 == 0:
prediction = hypothesis >= torch.FloatTensor([0.5])
correct_prediction = prediction.float() == y_train
accuracy = correct_prediction.sum().item() / len(correct_prediction)
print('Epoch : {:4d}/{} Cost : {:.6f} Accuracy {:2.2f}%'.format(
epoch, nb_epochs, cost.item(), accuracy * 100,
))
'''
Epoch : 0/100 Cost : 1.958243 Accuracy 50.00%
Epoch : 10/100 Cost : 0.673601 Accuracy 50.00%
Epoch : 20/100 Cost : 0.501478 Accuracy 66.67%
Epoch : 30/100 Cost : 0.423174 Accuracy 66.67%
Epoch : 40/100 Cost : 0.359201 Accuracy 83.33%
Epoch : 50/100 Cost : 0.304263 Accuracy 83.33%
Epoch : 60/100 Cost : 0.255134 Accuracy 83.33%
Epoch : 70/100 Cost : 0.210761 Accuracy 100.00%
Epoch : 80/100 Cost : 0.174970 Accuracy 100.00%
Epoch : 90/100 Cost : 0.153584 Accuracy 100.00%
Epoch : 100/100 Cost : 0.141670 Accuracy 100.00%
'''