N개의 수로 이루어진 수열 A1, A2, ..., AN이 주어진다. 또, 수와 수 사이에 끼워넣을 수 있는 N-1개의 연산자가 주어진다. 연산자는 덧셈(+), 뺄셈(-), 곱셈(×), 나눗셈(÷)으로만 이루어져 있다.
우리는 수와 수 사이에 연산자를 하나씩 넣어서, 수식을 하나 만들 수 있다. 이때, 주어진 수의 순서를 바꾸면 안 된다.
예를 들어, 6개의 수로 이루어진 수열이 1, 2, 3, 4, 5, 6이고, 주어진 연산자가 덧셈(+) 2개, 뺄셈(-) 1개, 곱셈(×) 1개, 나눗셈(÷) 1개인 경우에는 총 60가지의 식을 만들 수 있다. 예를 들어, 아래와 같은 식을 만들 수 있다.
식의 계산은 연산자 우선 순위를 무시하고 앞에서부터 진행해야 한다. 또, 나눗셈은 정수 나눗셈으로 몫만 취한다. 음수를 양수로 나눌 때는 C++14의 기준을 따른다. 즉, 양수로 바꾼 뒤 몫을 취하고, 그 몫을 음수로 바꾼 것과 같다. 이에 따라서, 위의 식 4개의 결과를 계산해보면 아래와 같다.
N개의 수와 N-1개의 연산자가 주어졌을 때, 만들 수 있는 식의 결과가 최대인 것과 최소인 것을 구하는 프로그램을 작성하시오.
첫째 줄에 수의 개수 N(2 ≤ N ≤ 11)가 주어진다. 둘째 줄에는 A1, A2, ..., AN이 주어진다. (1 ≤ Ai ≤ 100) 셋째 줄에는 합이 N-1인 4개의 정수가 주어지는데, 차례대로 덧셈(+)의 개수, 뺄셈(-)의 개수, 곱셈(×)의 개수, 나눗셈(÷)의 개수이다.
첫째 줄에 만들 수 있는 식의 결과의 최댓값을, 둘째 줄에는 최솟값을 출력한다. 연산자를 어떻게 끼워넣어도 항상 -10억보다 크거나 같고, 10억보다 작거나 같은 결과가 나오는 입력만 주어진다. 또한, 앞에서부터 계산했을 때, 중간에 계산되는 식의 결과도 항상 -10억보다 크거나 같고, 10억보다 작거나 같다.
2
5 6
0 0 1 0
30
30
import java.io.*;
import java.util.StringTokenizer;
public class Main {
static long MIN = 1000000001;
static long MAX = -1000000001;
static int N;
static int[] A = new int[101];
static int[] op = new int[5];
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
N = Integer.parseInt(br.readLine());
StringTokenizer st = new StringTokenizer(br.readLine());
for (int i = 1; i <= N; i++) {
A[i] = Integer.parseInt(st.nextToken());
}
st = new StringTokenizer(br.readLine());
for (int i = 1; i <= 4; i++) {
op[i] = Integer.parseInt(st.nextToken());
}
DFS(A[1], 2);
bw.write(MAX + "\n" + MIN + "\n");
br.close();
bw.flush();
bw.close();
}
public static void DFS(int sum, int cnt) {
if (cnt == N + 1) {
MAX = Math.max(MAX, sum);
MIN = Math.min(MIN, sum);
return;
}
for (int i = 1; i <= 4; i++) {
if (op[i] > 0) {
op[i]--;
if (i == 1) {
DFS(sum + A[cnt], cnt + 1);
} else if (i == 2) {
DFS(sum - A[cnt], cnt + 1);
} else if (i == 3) {
DFS(sum * A[cnt], cnt + 1);
} else {
DFS(sum / A[cnt], cnt + 1);
}
op[i]++;
}
}
}
}
(cnt==N+1)
최댓값 & 최솟값과 비교해 준다.