Negative Binomial Distribution

·2025년 3월 19일
0

The Negative Binomial (NB) you’re using (as implemented by MASS::glm.nb()) is parameterized by two quantities:

  • μμ = expected count (mean)
  • θθ (often called size or dispersion parameter) > 0

🔢 Probability Mass Function (PMF)

For y=0,1,2,y = 0,1,2,\dots, the NB‑2 PMF (MASS’s “size–mu” parameterization) is

P(Y=y)=Γ(y+θ)Γ(θ)y!(θθ+μ)θ(μθ+μ)y.P(Y = y) = \frac{\Gamma(y + θ)}{\Gamma(θ)\,y!} \left(\frac{θ}{θ + μ}\right)^{θ} \left(\frac{μ}{θ + μ}\right)^{y}.
  • Γ()\Gamma(\cdot) = gamma function
  • θ/(θ+μ)θ/(θ+μ) = probability of “failure”
  • μ/(θ+μ)μ/(θ+μ) = probability of “success”

📈 Mean & Variance

E[Y]=μ,Var(Y)=μ+μ2θ.E[Y] = μ, \qquad \mathrm{Var}(Y) = μ + \frac{μ^2}{θ}.

Because μ2θ0\frac{μ^2}{θ} ≥ 0, Var(Y) ≥ μ, making NB inherently a over‑dispersed generalization of Poisson.


📊 Role of θ

θ (size)InterpretationVar(Y) relative to μ
→∞Gamma mixing variance → 0Var ≈ μ (Poisson limit)
large (≫μ)Weak overdispersionVar slightly > μ
small (≪μ)Strong overdispersionVar ≫ μ
  • θθ is the shape parameter of the Gamma distribution in the Poisson–Gamma mixture view:
    1. Draw λGamma(shape=θ,  scale=μ/θ)\lambda \sim \mathrm{Gamma}(\text{shape}=θ,\;\text{scale}=μ/θ)
    2. Then YλPoisson(λ)Y \mid \lambda \sim \mathrm{Poisson}(\lambda)

⚠️ Why θ>0θ>0?

  • Gamma(shape=θθ) is only defined for θ>0θ>0
  • Ensures PMF integrates to 1
  • Guarantees Var(Y) ≥ μ (no underdispersion)

If θθ\to∞, NB “degenerates” to Poisson; if θθ is very small, variance blows up (extreme overdispersion).

profile
보건대학원 뉴비

0개의 댓글