인체에 치명적인 바이러스를 연구하던 연구소에서 바이러스가 유출되었다. 다행히 바이러스는 아직 퍼지지 않았고, 바이러스의 확산을 막기 위해서 연구소에 벽을 세우려고 한다.
연구소는 크기가 N×M인 직사각형으로 나타낼 수 있으며, 직사각형은 1×1 크기의 정사각형으로 나누어져 있다. 연구소는 빈 칸, 벽으로 이루어져 있으며, 벽은 칸 하나를 가득 차지한다.
일부 칸은 바이러스가 존재하며, 이 바이러스는 상하좌우로 인접한 빈 칸으로 모두 퍼져나갈 수 있다. 새로 세울 수 있는 벽의 개수는 3개이며, 꼭 3개를 세워야 한다.
예를 들어, 아래와 같이 연구소가 생긴 경우를 살펴보자.
2 0 0 0 1 1 0
0 0 1 0 1 2 0
0 1 1 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 1
0 1 0 0 0 0 0
0 1 0 0 0 0 0
이때, 0은 빈 칸, 1은 벽, 2는 바이러스가 있는 곳이다. 아무런 벽을 세우지 않는다면, 바이러스는 모든 빈 칸으로 퍼져나갈 수 있다.
2행 1열, 1행 2열, 4행 6열에 벽을 세운다면 지도의 모양은 아래와 같아지게 된다.
2 1 0 0 1 1 0
1 0 1 0 1 2 0
0 1 1 0 1 0 0
0 1 0 0 0 1 0
0 0 0 0 0 1 1
0 1 0 0 0 0 0
0 1 0 0 0 0 0
바이러스가 퍼진 뒤의 모습은 아래와 같아진다.
2 1 0 0 1 1 2
1 0 1 0 1 2 2
0 1 1 0 1 2 2
0 1 0 0 0 1 2
0 0 0 0 0 1 1
0 1 0 0 0 0 0
0 1 0 0 0 0 0
벽을 3개 세운 뒤, 바이러스가 퍼질 수 없는 곳을 안전 영역이라고 한다. 위의 지도에서 안전 영역의 크기는 27이다.
연구소의 지도가 주어졌을 때 얻을 수 있는 안전 영역 크기의 최댓값을 구하는 프로그램을 작성하시오.
첫째 줄에 지도의 세로 크기 N과 가로 크기 M이 주어진다. (3 ≤ N, M ≤ 8)
둘째 줄부터 N개의 줄에 지도의 모양이 주어진다. 0은 빈 칸, 1은 벽, 2는 바이러스가 있는 위치이다. 2의 개수는 2보다 크거나 같고, 10보다 작거나 같은 자연수이다.
빈 칸의 개수는 3개 이상이다.
첫째 줄에 얻을 수 있는 안전 영역의 최대 크기를 출력한다.
from collections import deque
n,m = map(int,input().split())
grid = [list(map(int,input().split())) for _ in range(n)]
wall = []
virus = []
road = []
dr = [0,1,0,-1]
dc = [1,0,-1,0]
for i in range(n) :
for j in range(m) :
if grid[i][j] == 0 :
road.append((i,j))
elif grid[i][j] == 1 :
wall.append((i,j))
else :
virus.append((i,j))
sub_wall = []
l = len(road)
for i in range(l-2) :
for j in range(i+1,l-1) :
for k in range(j+1,l) :
sub_wall.append((road[i],road[j],road[k]))
ans = 0
for w in sub_wall :
for _ in range(3) :
grid[w[_][0]][w[_][1]] = 1
visited = set()
q = deque(virus[:])
while q :
cr,cc = q.popleft()
visited.add((cr,cc))
for d in range(4) :
nr = cr + dr[d]
nc = cc + dc[d]
if 0<=nr<n and 0<=nc<m and not (nr,nc) in visited and grid[nr][nc] ==0:
q.append((nr,nc))
v = len(visited)
tmp_res = n*m - len(wall) - v -3
if tmp_res > ans :
ans = tmp_res
for _ in range(3) :
grid[w[_][0]][w[_][1]] = 0
print(ans)