오토인코더(Auto encoder)

hottogi·2022년 11월 28일
0

오토인코더

지도학습과 비지도학습이 섞인 신경망
입력도 정답도 동일하다.

import torch
import torchvision
import torch.nn.functional as F
from torch import nn, optim
from torchvision import transforms, datasets

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import numpy as np
EPOCH = 10
BATCH_SIZE = 64
USE_CUDA = torch.cuda.is_available()
DEVICE = torch.device("cuda" if USE_CUDA else "cpu")
print("Using Device", DEVICE)

Using Device cpu

Fashion MNIST 데이터셋 사용

trainset = datasets.FashionMNIST(
    root = './.data/',
    train = True,
    download = True,
    transform = transforms.ToTensor()
)
train_loader = torch.utils.data.DataLoader(
    dataset = trainset,
    batch_size = BATCH_SIZE,
    shuffle = True,
    num_workers = 2
)
class Autoencoder(nn.Module):
  def __init__(self):
    super(Autoencoder, self).__init__()
    self.encoder = nn.Sequential(
        nn.Linear(28*28, 128),
        nn.ReLU(),
        nn.Linear(128,64),
        nn.ReLU(),
        nn.Linear(64, 12),
        nn.ReLU(),
        nn.Linear(12, 3),
    )
    self.decoder = nn.Sequential(
        nn.Linear(3, 12),
        nn.ReLU(),
        nn.Linear(12, 64),
        nn.ReLU(),
        nn.Linear(64, 128),
        nn.ReLU(),
        nn.Linear(128,28*28),
        nn.Sigmoid(),
    )
  def forward(self, x):
    encoded = self.encoder(x)
    decoded = self.decoder(encoded)
    return encoded, decoded
autoencoder = Autoencoder().to(DEVICE)
optimizer = torch.optim.Adam(autoencoder.parameters(), lr=0.005)
criterion = nn.MSELoss()

view_data = trainset.data[:5].view(-1, 28*28)
view_data = view_data.type(torch.FloatTensor)/255.

def train(autoencoder, train_loader):
  autoencoder.train()
  for step, (x, label) in enumerate(train_loader):
    x = x.view(-1, 28*28).to(DEVICE)
    y = x.view(-1, 28*28).to(DEVICE)
    label = label.to(DEVICE)

    encoded, decoded = autoencoder(x)

    loss = criterion(decoded, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    

for epoch in range(1, EPOCH + 1):
  train(autoencoder, train_loader)

  test_x = view_data.to(DEVICE)
  _, decoded_data = autoencoder(test_x)

  f, a = plt.subplots(2, 5, figsize = (5, 2))
  print("[Epoch {}]". format(epoch))
  for i in range(5):
    img = np.reshape(view_data.data.numpy()[i],(28,28))
    a[0][i].imshow(img, cmap = 'gray')
    a[0][i].set_xticks(()); a[0][i].set_yticks(())

  for i in range(5):
    img = np.reshape(decoded_data.to("cpu").data.numpy()[i], (28, 28))
    a[1][i].imshow(img, cmap='gray')
    a[1][i].set_xticks(()); a[1][i].set_yticks(())
  plt.show()

[Epoch 1]

[Epoch 2]

[Epoch 3]

[Epoch 4]

[Epoch 5]

[Epoch 6]

[Epoch 7]

[Epoch 8]

[Epoch 9]

[Epoch 10]

view_data = trainset.data[:200].view(-1, 28*28)
view_data = view_data.type(torch.FloatTensor)/255.
test_x = view_data.to(DEVICE)
encoded_data, _ = autoencoder(test_x)
encoded_data = encoded_data.to("cpu")

CLASSES = {
    0: 'T-shirt/top',
    1: 'Trouser',
    2: 'Pullover',
    3: 'Dress',
    4: 'Coat',
    5: 'Sandal',
    6: 'Shirt',
    7: 'Sneaker',
    8: 'Bag',
    9: 'Ankle boot'
}

fig = plt.figure(figsize = (10, 8))
ax = Axes3D(fig)

X = encoded_data.data[:, 0].numpy()
Y = encoded_data.data[:, 1].numpy()
Z = encoded_data.data[:, 2].numpy()

labels = trainset.targets[:200].numpy()

for x, y, z, s in zip(X, Y, Z, labels):
  name = CLASSES[s]
  color = cm.rainbow(int(255*s/9))
  ax.text(x, y, z, name, backgroundcolor = color)

ax.set_xlim(X.min(), X.max())
ax.set_ylim(Y.min(), Y.max())
ax.set_zlim(Z.min(), Z.max())
plt.show()

def add_noise(img):
  noise = torch.randn(img.size()) * 0.2
  noisy_img = img + noise
  return noisy_img

def train(autoencoder, train_loader):
  autoencoder.train()
  avg_loss = 0
  for step, (x, label) in enumerate(train_loader):
    noisy_x = add_noise(x)
    noisy_x = noisy_x.view(-1, 28*28).to(DEVICE)
    y = x.view(-1, 28*28).to(DEVICE)

    label = label.to(DEVICE)
    encoded, decoded = autoencoder(noisy_x)

    loss = criterion(decoded, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    avg_loss += loss.item()
  return avg_loss / len(train_loader)

for epoch in range(1, EPOCH+1):
  loss = train(autoencoder, train_loader)
  print("[Epoch {}] loss:{}".format(epoch, loss))

[Epoch 1] loss:0.022892520494902056
[Epoch 2] loss:0.022623990455876663
[Epoch 3] loss:0.022471951467713823
[Epoch 4] loss:0.02220049521713051
[Epoch 5] loss:0.022231545952607446
[Epoch 6] loss:0.022241649394636468
[Epoch 7] loss:0.022144924481905727
[Epoch 8] loss:0.02213607079335558
[Epoch 9] loss:0.021960824859072404
[Epoch 10] loss:0.022111457834111604

testset = datasets.FashionMNIST(
    root = './.data/',
    train = False,
    download = True,
    transform = transforms.ToTensor()
)

sample_data = testset.data[0].view(-1, 28*28)
sample_data = sample_data.type(torch.FloatTensor)/255.

original_x = sample_data[0]
noisy_x = add_noise(original_x).to(DEVICE)
_, recovered_x = autoencoder(noisy_x)

f, a = plt.subplots(1, 3, figsize = (15, 15))

original_img = np.reshape(original_x.to('cpu').data.numpy(), (28, 28))
noisy_img = np.reshape(noisy_x.to("cpu").data.numpy(), (28, 28))
recovered_img = np.reshape(recovered_x.to("cpu").data.numpy(), (28, 28))

a[0].set_title("Original")
a[0].imshow(original_img, cmap='gray')

a[1].set_title('Noisy')
a[1].imshow(noisy_img, cmap='gray')

a[2].set_title('Recovered')
a[2].imshow(recovered_img, cmap='gray')

plt.show()

profile

0개의 댓글