[2021 이코테] 9. 기타 알고리즘

GreenBean·2021년 8월 23일
0
post-thumbnail

기타 알고리즘

[2021 이코테] 9. 코딩 테스트에서 자주 출제되는 기타 알고리즘

기타 알고리즘

소수 (Prime Number)

  • 소수란 1보다 큰 자연수 중에서 1과 자기 자신을 제외한 자연수로는 나누어 떨어지지 않는 자연수
    • 6은 1, 2, 3, 6으로 나누어 떨어지므로 소수가 아님
    • 7은 1과 7을 제외하고는 나누어 떨어지지 않으므로 소수
  • 코딩 테스트에서는 어떠한 자연수가 소수인지 아닌지 판별해야 하는 문제가 자주 출제됨
# 소수의 판별: 기본적인 알고리즘 (Python)

# 소수 판별 함수 (2이상의 자연수에 대하여)
def is_prime_number(x):
    # 2부터 (x - 1)까지의 모든 수를 확인하며
    for i in range(2, x):
        # x가 해당 수로 나누어 떨어진다면
        if x % i == 0:
            return False # 소수가 아님
    return True # 소수임

print(is_prime_number(4))
print(is_prime_number(7))

>>> False
>>> True

소수의 판별: 기본적인 알고리즘 성능 분석

  • 2부터 X-1까지의 모든 자연수에 대하여 연산을 수행해야 함
    • 모든 수를 하나씩 확인한다는 점에서 시간 복잡도는 O(X)

약수의 성질

  • 모든 약수가 가운데 약수를 기준으로 곱셈 연산에 대해 대칭을 이루는 것을 알 수 있음
    • 예를 들어 16의 약수는 1, 2, 4, 8, 16
    • 이 때 2 X 8 = 16은 8 X 2 = 16과 대칭
  • 따라서 우리는 특정한 자연수의 모든 약수를 찾을 때 가운데 약수(제곱근)까지만 확인하면 됨
    • 예를 들어 16이 2로 나누어 떨어진다는 것은 8로도 나누어 떨어진다는 것을 의미

# 소수의 판별: 개선된 알고리즘 (Python)

import math

# 소수 판별 함수 (2이상의 자연수에 대하여)
def is_prime_number(x):
    # 2부터 x의 제곱근까지의 모든 수를 확인하며
    for i in range(2, int(math.sqrt(x)) + 1):
        # x가 해당 수로 나누어 떨어진다면
        if x % 1 == 0:
            return False # 소수가 아님
    return True # 소수임

print(is_prime_number(4))
print(is_prime_number(7))

>>> False
>>> True

소수의 판별: 개선된 알고리즘 성능 분석

  • 2부터 X의 제곱근(소수점 이하 무시)까지의 모든 자연수에 대하여 연산을 수행
    • 시간 복잡도는 O(N½)

다수의 소수 판별

  • 하나의 수에 대해서 소수인지 아닌지 판별하는 방법을 알아보았음
  • 하지만 특정한 수의 범위 안에 존재하는 모든 소수를 찾아야 할 때는?
    • 에라토스테네스의 체 알고리즘을 사용할 수 있음

에라토스테네스의 체 알고리즘

  • 다수의 자연수에 대하여 소수 여부를 판별할 때 사용하는 대표적인 알고리즘
  • 에라토스테네스의 체는 N보다 작거나 같은 모든 소수를 찾을 때 사용 가능
  • 에라토스테네스의 체 알고리즘의 구체적인 동작 과정은 다음과 같음
      1. 2부터 N까지의 모든 자연수를 나열
      1. 남은 수 중에서 아직 처리하지 않은 가장 작은 수 i를 찾음
      1. 남은 수 중에서 i의 배수를 모두 제거 (i는 제거하지 않음)
      1. 더 이상 반복할 수 없을 때까지 2번과 3번의 과정을 반복

# 에라토스테네스의 체 알고리즘 (Python)

import math

n = 1000 # 2부터 1,000까지의 모든 수에 대하여 소수 판별
# 처음엔 모든 수가 소수(True)인 것으로 초기화(0과 1은 제외)
array = [True for i in range(n + 1)]

# 에라토스테네스의 체 알고리즘 수행
# 2부터 n의 제곱근까지의 모든 수를 확인하며
for i in range(2, int(math.sqrt(n)) + 1):
    if array[i] == True: # i가 소수인 경우(남은 수인 경우)
        # i를 제외한 i의 모든 배수를 지우기
        j = 2
        while i * j <= n:
            array[i * j] = False
            j += 1

# 모든 소수 출력
for i in range(2, n + 1):
    if array[i]:
        print(i, end=' ')

에라토스테네스의 체 알고리즘 성능 분석

  • 에라토스테네스의 체 알고리즘의 시간 복잡도는 사실상 선형 시간에 가까울 정도로 매우 빠름
    • 시간 복잡도는 O(NloglogN)
  • 에라토스테네스의 체 알고리즘은 다수의 소수를 찾아야 하는 문제에서 효과적으로 사용될 수 있음
    • 하지만 각 자연수에 대한 소수 여부를 저장해야 하므로 메모리가 많이 필요
    • 10억이 소수인지 아닌지 판별해야 할 때 에라토스테네스의 체를 사용할 수 있을까?
      • 경우에 따라서 메모리 측면에서 매우 비효율적으로 동작할 수 있음

투 포인터 (Two Pointers)

  • 투 포인터 알고리즘은 리스트에 순차적으로 접근해야 할 때 두 개의 점의 위치를 기록하면서 처리하는 알고리즘을 의미
  • 흔히 2, 3, 4, 5, 6, 7번 학생을 지목해야 할 때 간단히 '2번부터 7번까지의 학생'이라고 부르곤 함
  • 리스트에 담긴 데이터에 순차적으로 접근해야 할 때는 시작점과 끝점 2개의 점으로 접근할 데이터의 범위를 표현할 수 있음

문제: 특정한 합을 가지는 부분 연속 수열 찾기

문제 해결 아이디어

  • 투 포인터를 활용하여 다음과 같은 알고리즘으로 문제를 해결할 수 있음
      1. 시작점(start)과 끝점(end)이 첫 번째 원소의 인덱스(0)를 가리키도록 함
      1. 현재 부분 합이 M과 같다면, 카운트 함
      1. 현재 부분 합이 M보다 작다면, end를 1 증가시킴
      1. 현재 부분 합이 M보다 크거나 같다면, start를 1 증가시킴
      1. 모든 경우를 확인할 때까지 2번부터 4번까지의 과정을 반복

n = 5 # 데이터의 개수 N
m = 5 # 찾고자 하는 부분합 M
data = [1, 2, 3, 2, 5] # 전체 수열

count = 0
interval_sum = 0
end = 0

# start를 차례대로 증가시키며 반복
for start in range(n):
    # end를 가능한 만큼 이동시키기
    while interval_sum < m and end < n:
        interval_sum += data[end]
        end += 1
    # 부분합이 m일 때 카운트 증가
    if interval_sum == m:
        count += 1
    interval_sum -= data[start]

print(count)

>>> 3

구간 합 (Interval Sum)

  • 구간 합 문제: 연속적으로 나열된 N개의 수가 있을 때 특정 구간의 모든 수를 합한 값을 계산하는 문제
  • 예를 들어 5개의 데이터로 구성된 수열 {10, 20, 30, 40, 50}이 있다고 가정
    • 두 번째 수부터 네 번째 수까지의 합은 20 + 30 + 40 = 90

문제: 구간 합 빠르게 계산하기

문제 해결 아아디어

  • 접두사 합(Prefix Sum): 배열의 맨 앞부터 특정 위치까지의 합을 미리 구해 놓은 것
  • 접두사 합을 활용한 알고리즘은 다음과 같음
    • N개의 수 위치 각각에 대하여 접두사 합을 계산하여 P에 저장
    • 매 M개의 쿼리 정보를 확인할 때 구간 합은 P[Right] - P[Left - 1]

# 데이터의 개수 N과 데이터 입력 받기
n = 5
data = [10, 20, 30, 40, 50]

# 접두사 합(Prefix Sum) 배열 계산
sum_value = 0
prefix_sum = [0]
for i in data:
    sum_value += i
    prefix_sum.append(sum_value)

# 구간 합 계산(세 번째 수부터 네 번째 수까지)
left = 3
right = 4
print(prefix_sum[right] - prefix_sum[left - 1])

>>> 70
profile
🌱 Backend-Dev | hwaya2828@gmail.com

0개의 댓글