1937년 Collatz란 사람에 의해 제기된 이 추측은, 주어진 수가 1이 될 때까지 다음 작업을 반복하면, 모든 수를 1로 만들 수 있다는 추측입니다. 작업은 다음과 같습니다.
1-1. 입력된 수가 짝수라면 2로 나눕니다.
1-2. 입력된 수가 홀수라면 3을 곱하고 1을 더합니다.
2. 결과로 나온 수에 같은 작업을 1이 될 때까지 반복합니다.
예를 들어, 주어진 수가 6이라면 6 → 3 → 10 → 5 → 16 → 8 → 4 → 2 → 1 이 되어 총 8번 만에 1이 됩니다. 위 작업을 몇 번이나 반복해야 하는지 반환하는 함수, solution을 완성해 주세요. 단, 주어진 수가 1인 경우에는 0을, 작업을 500번 반복할 때까지 1이 되지 않는다면 –1을 반환해 주세요.
class Solution {
fun solution(num: Int): Int {
var cnt = 0
var n = num.toLong()
while (n > 1) {
if (n % 2 == 0L) {
n /= 2
}
else {
n = n * 3 + 1
}
cnt++
if (cnt > 500) break;
}
return if (cnt < 501) cnt else -1
}
}
📢 int형 num을 long형으로 바꾸지 않으면 오버 플로우 발생