Given the root of a binary tree, return the level order traversal of its nodes' values. (i.e., from left to right, level by level).
Input: root = [3,9,20,null,null,15,7]
Output: [[3],[9,20],[15,7]]
Input: root = [1]
Output: [[1]]
Input: root = []
Output: []
The number of nodes in the tree is in the range [0, 2000].
-1000 <= Node.val <= 1000
같은 레벨의 노드를 출력한다
left/right의 값이 있으면, q에 차례로 쌓는다
쌓은 q를 반환하기 위한 ans vector에 넣어준다
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
#### * TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
#include <vector>
class Solution
{
public:
vector<vector<int>> levelOrder(TreeNode *root)
{
vector<vector<int>> ans;
if (root == NULL)
return ans;
queue<TreeNode *> q;
q.push(root);
while (!q.empty())
{
int s = q.size();
vector<int> v;
for (int i = 0; i < s; i++)
{
TreeNode *node = q.front();
q.pop();
if (node->left != NULL)
q.push(node->left);
if (node->right != NULL)
q.push(node->right);
v.push_back(node->val);
}
ans.push_back(v);
}
return ans;
}
};
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
# BFS Iterative solution
# Time complexity - O(n) | Space complexity - O(n)
def levelOrder(self, root: TreeNode) -> List[List[int]]:
if not root:
return root
res = []
nodes = deque([root])
while nodes:
l = len(nodes)
temp = []
for i in range(l):
node = nodes.popleft()
if node:
temp.append(node.val)
nodes.append(node.left)
nodes.append(node.right)
if len(temp)>0:
res.append(temp)
return res