Given the root of a binary tree, check whether it is a mirror of itself (i.e., symmetric around its center).
Input: root = [1,2,2,3,4,4,3]
Output: true
Input: root = [1,2,2,null,3,null,3]
Output: false
The number of nodes in the tree is in the range [1, 1000].
-100 <= Node.val <= 100
Could you solve it both recursively and iteratively?
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution
{
public:
bool isSymmetricNode(TreeNode *left, TreeNode *right)
{
if (left == nullptr && right == nullptr)
return true;
if (left == nullptr || right == nullptr)
return false;
return (left->val == right->val) && isSymmetricNode(left->left, right->right) && isSymmetricNode(left->right, right->left);
}
bool isSymmetric(TreeNode *root)
{
if (root == nullptr)
return true;
return isSymmetricNode(root->left, root->right);
}
};