* 최대값을 가지는 특성 추출
SELECT
COL
FROM
TABLE
WHERE MAX IN (
SELECT MAX
FROM TABLE
ORDER BY MAX DESC
LIMIT 1)
;
sns.factorplot
=> 카테고리형 데이터 시각화 좋은툴sns.kdeplot
, sns.violinplot
=> binary classification에서 실수형 feature와 비교df.Column.str.extract('([A-Za-z]+)\.')
점까지 추출Transfomer => encoder stack + Decoder stack
Stack each has layer => transfomer encoder / decoder block => BERT
Transfomer Laungage => Decoder (GPT-3, GPT-2(36 blocks)) , Encoder(BERT(24 blocks))
Training - Language => generated training example ( second law of robotics: a robot must obey the orders given it by humna beings. )
input => a robot must => training => troll(randomly selected junk) => No (Should be obey) calcuated error => fitting model updated => more likely to say obey => 10 millions times
feed foward neural network
=> what 'it' refers to ? => was covered in grass (it = road) => self-attention
=> first component => entire sequence Tokenization => The Shaw sh ank => token_ids(integer) => output id => tokenizer => translate
Token embeddings => model vocabulary size (50,257) => numeric vector => training makes vocabulary embeddings =>
Input => Tokenization => embeding layer => numeric vector => decoder block => parallel => decoder block(highly concepted) => These are hidden states => a vector scores correspond to vocabulary(50,257) => softmax => probablility (all postive and add up to 1) => choose first highest one (GREEDY ONE)
큰 수의 법칙에 대해서 설명해보세요.
A라는 사건에 대해서 시행 횟수가 커지면 커질수록, 수학적 확률과 통계적 확률은 같아 진다.