GPU
Designer
히스토그램(histogram)
연봉예측 모델과 활용
결과
Azure Machine Learning의 파이프라인 엔드포인트를 제출하기 위한 Swagger API
Regenerate response마다 다른답변
from azureml.core.authentication import InteractiveLoginAuthentication
from azureml.pipeline.core import PipelineEndpoint
import requests
interactive_auth = InteractiveLoginAuthentication()
ws = Workspace.from_config(auth=interactive_auth)
pipeline_endpoint = PipelineEndpoint.get(workspace=ws, name="my-pipeline-endpoint")
submit_url = "https://eastus2.api.azureml.ms/pipelines/v1.0/pipelineEndpoints/{}/submit".format(pipeline_endpoint.id)
headers = {
"Authorization": "Bearer " + interactive_auth.get_authentication_header().get("Authorization"),
"Content-Type": "application/json"
}
body = {
"experimentName": "my-experiment",
"runName": "my-run",
"pipelineParameters": {
"param1": "value1",
"param2": "value2"
}
}
response = requests.post(submit_url, headers=headers, json=body)
print(response.status_code)
print(response.json())
Automated ML
MLOps