You are given a perfect binary tree where all leaves are on the same level, and every parent has two children. The binary tree has the following definition:
struct Node {
int val;
Node left;
Node right;
Node *next;
}
Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL.
Initially, all next pointers are set to NULL.
Follow up:
"""
# Definition for a Node.
class Node:
def __init__(self, val: int = 0, left: 'Node' = None, right: 'Node' = None, next: 'Node' = None):
self.val = val
self.left = left
self.right = right
self.next = next
"""
class Solution:
def connect(self, root: 'Node') -> 'Node':
if root is None:
return root
def _level_order_traversal(root):
count = 1
queue = [root]
isRight = 1
while queue:
root = queue.pop(0)
if queue:
root.next = queue[0]
if isRight == 1 or count == isRight:
isRight = count * 2 + 1
root.next = None
if root is not None:
if root.left:
queue.append(root.left)
if root.right:
queue.append(root.right)
count += 1
_level_order_traversal(root)
return root
level order 순회를 사용해서 풀었다.
count 로 노드의 개수를 세고 isRight 로 가장 오른쪽의 노드번호를 계산해줬다.
isRight => 1, 3(1*2+1), 7(3*2+1), 15(7*2+1), 31(15*2+1), ... (count*2+1)
"""
# Definition for a Node.
class Node:
def __init__(self, val: int = 0, left: 'Node' = None, right: 'Node' = None, next: 'Node' = None):
self.val = val
self.left = left
self.right = right
self.next = next
"""
class Solution:
def connect(self, root: 'Node') -> 'Node':
## RC ##
## APPROACH : RECURSION ##
## LOGIC ##
## If you keenly observe, every right nodes next pointer is LEFT child of its PARENT's NEXT NODE ##
## TIME COMPLEXITY : O(N) ##
## SPACE COMPLEXITY : O(N) ##
def dfs(node):
if not node : return
if node.right and node.next:
node.right.next = node.next.left # remember its a complete binary tree, no need to check if node.next.left exists or not
if node.left:
node.left.next = node.right
dfs(node.left)
dfs(node.right)
dfs(root)
return root
재귀 이용한 방식