놀다가 한 17분 남았을 때부터 풀었다...^^
We have two special characters. The first character can be represented by one bit 0. The second character can be represented by two bits (10 or 11).
Now given a string represented by several bits. Return whether the last character must be a one-bit character or not. The given string will always end with a zero.
class Solution:
def isOneBitCharacter(self, bits: List[int]) -> bool:
tmp = []
t = ""
carry = 1
for i in range(len(bits)):
if t == "10" or t == "11" or t == "0":
tmp.append(t)
t = ""
t += str(bits[i])
tmp.append(t)
if tmp[-1] != "0":
return False
return True
t
에 값을 넣어가면서 10
, 11
, 0
으로 구분해서 넣어주고
맨 마지막 값이 1 bit 인지 확인해줬음
int 형 그대로 써서 해도 될 듯 -> carry
이용
Design a class to find the kth largest element in a stream. Note that it is the kth largest element in the sorted order, not the kth distinct element.
Implement KthLargest class:
KthLargest(int k, int[] nums) Initializes the object with the integer k and the stream of integers nums.
int add(int val) Returns the element representing the kth largest element in the stream.
class KthLargest:
def __init__(self, k: int, nums: List[int]):
self.arr = sorted(nums)
self.kth = k
def add(self, val: int) -> int:
self.arr.append(val)
self.arr.sort()
ans = self.arr[len(self.arr) - self.kth]
return ans
# Your KthLargest object will be instantiated and called as such:
# obj = KthLargest(k, nums)
# param_1 = obj.add(val)
시간 없어서 초비효율 코드 등장^^
일단 넣고 sort 로 정렬한 후 k 번째로 큰 값 return
그 와중에 k 번째로 작은 값인줄 알고 삽질도 함...ㅠ
class KthLargest:
def __init__(self, k: int, nums: List[int]):
self.arr = sorted(nums)
self.kth = k
def add(self, val: int) -> int:
l = 0
r = len(self.arr)-1
while l <= r:
m = (l+r) // 2
if self.arr[m] > val:
r = m - 1
else:
l = m + 1
self.arr.insert(l, val)
ans = self.arr[len(self.arr) - self.kth]
return ans
# Your KthLargest object will be instantiated and called as such:
# obj = KthLargest(k, nums)
# param_1 = obj.add(val)
막판 한 1분만에 Binary Search 로 찾아주고 insert 하는 걸로 변경
쬐끔 더 빠르다^^
시간이 더 있었다면 min-heap 사용했을 듯
class KthLargest:
def __init__(self, k: int, nums: List[int]):
self.heap = nums
heapq.heapify(self.heap)
self.k = k
def add(self, val: int) -> int:
heapq.heappush(self.heap,val)
# if heap grows bigger then k remove elements
while len(self.heap) > self.k:
heapq.heappop(self.heap)
return self.heap[0]
# Your KthLargest object will be instantiated and called as such:
# obj = KthLargest(k, nums)
# param_1 = obj.add(val)
Min-Heap 사용
add 할 때마다 pop 을 이용해서 self.heap[0]
값을 계속 k 번째 큰 값으로 유지해줌