[Python] BOJ 13305 Greedy / 주유소

Jerry·2022년 8월 5일
0

알고리즘

목록 보기
15/25

문제
어떤 나라에 N개의 도시가 있다. 이 도시들은 일직선 도로 위에 있다. 편의상 일직선을 수평 방향으로 두자. 제일 왼쪽의 도시에서 제일 오른쪽의 도시로 자동차를 이용하여 이동하려고 한다. 인접한 두 도시 사이의 도로들은 서로 길이가 다를 수 있다. 도로 길이의 단위는 km를 사용한다.

처음 출발할 때 자동차에는 기름이 없어서 주유소에서 기름을 넣고 출발하여야 한다. 기름통의 크기는 무제한이어서 얼마든지 많은 기름을 넣을 수 있다. 도로를 이용하여 이동할 때 1km마다 1리터의 기름을 사용한다. 각 도시에는 단 하나의 주유소가 있으며, 도시 마다 주유소의 리터당 가격은 다를 수 있다. 가격의 단위는 원을 사용한다.

예를 들어, 이 나라에 다음 그림처럼 4개의 도시가 있다고 하자. 원 안에 있는 숫자는 그 도시에 있는 주유소의 리터당 가격이다. 도로 위에 있는 숫자는 도로의 길이를 표시한 것이다.

제일 왼쪽 도시에서 6리터의 기름을 넣고, 더 이상의 주유 없이 제일 오른쪽 도시까지 이동하면 총 비용은 30원이다. 만약 제일 왼쪽 도시에서 2리터의 기름을 넣고(2×5 = 10원) 다음 번 도시까지 이동한 후 3리터의 기름을 넣고(3×2 = 6원) 다음 도시에서 1리터의 기름을 넣어(1×4 = 4원) 제일 오른쪽 도시로 이동하면, 총 비용은 20원이다. 또 다른 방법으로 제일 왼쪽 도시에서 2리터의 기름을 넣고(2×5 = 10원) 다음 번 도시까지 이동한 후 4리터의 기름을 넣고(4×2 = 8원) 제일 오른쪽 도시까지 이동하면, 총 비용은 18원이다.

각 도시에 있는 주유소의 기름 가격과, 각 도시를 연결하는 도로의 길이를 입력으로 받아 제일 왼쪽 도시에서 제일 오른쪽 도시로 이동하는 최소의 비용을 계산하는 프로그램을 작성하시오.

입력
표준 입력으로 다음 정보가 주어진다. 첫 번째 줄에는 도시의 개수를 나타내는 정수 N(2 ≤ N ≤ 100,000)이 주어진다. 다음 줄에는 인접한 두 도시를 연결하는 도로의 길이가 제일 왼쪽 도로부터 N-1개의 자연수로 주어진다. 다음 줄에는 주유소의 리터당 가격이 제일 왼쪽 도시부터 순서대로 N개의 자연수로 주어진다. 제일 왼쪽 도시부터 제일 오른쪽 도시까지의 거리는 1이상 1,000,000,000 이하의 자연수이다. 리터당 가격은 1 이상 1,000,000,000 이하의 자연수이다.

출력
표준 출력으로 제일 왼쪽 도시에서 제일 오른쪽 도시로 가는 최소 비용을 출력한다.

서브태스크
번호 배점 제한
1 17
모든 주유소의 리터당 가격은 1원이다.

2 41
2 ≤ N ≤ 1,000, 제일 왼쪽 도시부터 제일 오른쪽 도시까지의 거리는 최대 10,000, 리터 당 가격은 최대 10,000이다.

3 42
원래의 제약조건 이외에 아무 제약조건이 없다.

입력 예시
4
2 3 1
5 2 4 1

출력 예시
18

문제 해결 포인트
1. 첫 도시의 주유소 가격을 최소 가격으로 지정한다.
2. 다음 도시 가격과 비교
2-1. 최소 가격(현재 도시 가격) > 다음 도시 가격 일때 다음 도시까지의 거리만큼만 주유 후 최소 가격을 다음 도시 가격으로 변경.
2-2. 최소 가격(현재 도시 가격) <= 다음 도시 가격 일때 다음 도시까지만큼만 주유하되 최소 가격 유지.

이후 반복

코드

# Greedy 13305 주유소

n = int(input())                            # 도시 개수
gaps = list(map(int, input().split()))      # 도시 개수 - 1개 만큼의 각 도시간 거리
prices = list(map(int, input().split()))    # 각 도시별 기름 가격

minPrice = prices[0]                        # 최소가격
totPrice = 0                                # 최종가격

for i in range(1, n) : 
    if minPrice > prices[i] : 
        totPrice += gaps[i-1] * minPrice
        minPrice = prices[i]
    else : totPrice += gaps[i-1] * minPrice

print(totPrice)
profile
함께 일 하고 싶은 개발자가 되길 희망합니다.

0개의 댓글