class Solution:
def reverseWords(self, s: str) -> str:
words = s.count(" ") + 1
cut = s.split(" ")
result = ""
for c in cut:
newc = c[::-1]
result = result + " " + newc
return result[1:]
Runtime: 32 ms, faster than 80.47% of Python3 online submissions for Reverse Words in a String III.
Memory Usage: 15 MB, less than 25.85% of Python3 online submissions for Reverse Words in a String III.
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def swapPairs(self, head: ListNode) -> ListNode:
start = ListNode(-1)
start.next = head
cur = start
while head and head.next:
first = head
second = head.next
cur.next = second
first.next = second.next
second.next = first
cur = first
head = first.next
return start.next
Runtime: 32 ms, faster than 64.17% of Python3 online submissions for Swap Nodes in Pairs.
Memory Usage: 14.2 MB, less than 74.50% of Python3 online submissions for Swap Nodes in Pairs.
class TrieNode {
HashMap<Character, TrieNode> children = new HashMap<Character, TrieNode>();
String word = null;
public TrieNode() {}
}
class Solution {
char[][] _board = null;
ArrayList<String> _result = new ArrayList<String>();
public List<String> findWords(char[][] board, String[] words) {
// Step 1). Construct the Trie
TrieNode root = new TrieNode();
for (String word : words) {
TrieNode node = root;
for (Character letter : word.toCharArray()) {
if (node.children.containsKey(letter)) {
node = node.children.get(letter);
} else {
TrieNode newNode = new TrieNode();
node.children.put(letter, newNode);
node = newNode;
}
}
node.word = word; // store words in Trie
}
this._board = board;
// Step 2). Backtracking starting for each cell in the board
for (int row = 0; row < board.length; ++row) {
for (int col = 0; col < board[row].length; ++col) {
if (root.children.containsKey(board[row][col])) {
backtracking(row, col, root);
}
}
}
return this._result;
}
private void backtracking(int row, int col, TrieNode parent) {
Character letter = this._board[row][col];
TrieNode currNode = parent.children.get(letter);
// check if there is any match
if (currNode.word != null) {
this._result.add(currNode.word);
currNode.word = null;
}
// mark the current letter before the EXPLORATION
this._board[row][col] = '#';
// explore neighbor cells in around-clock directions: up, right, down, left
int[] rowOffset = {-1, 0, 1, 0};
int[] colOffset = {0, 1, 0, -1};
for (int i = 0; i < 4; ++i) {
int newRow = row + rowOffset[i];
int newCol = col + colOffset[i];
if (newRow < 0 || newRow >= this._board.length || newCol < 0
|| newCol >= this._board[0].length) {
continue;
}
if (currNode.children.containsKey(this._board[newRow][newCol])) {
backtracking(newRow, newCol, currNode);
}
}
// End of EXPLORATION, restore the original letter in the board.
this._board[row][col] = letter;
// Optimization: incrementally remove the leaf nodes
if (currNode.children.isEmpty()) {
parent.children.remove(letter);
}
}
}
Runtime: 15 ms, faster than 96.69% of Java online submissions for Word Search II.
Memory Usage: 39.9 MB, less than 13.68% of Java online submissions for Word Search II.