Question
Core Logic
Intuitive Logic
- Intuitively, we can use iterate through vector, and remove corresponding elements
- Which 'Looks like' O(N) solution, but if we look at the
vector.erase()
's time complexity, worst case would take O(N) for each single erase operation.
- Meaning, looping through vector takes O(N), and if we remove an element, that operation also takes O(N).
- So in worst case[i.e vector with all 2's and removeTarget = 2], this Logic takes O(N^2) times.
Bit more optimized Logic && Algorithm
- This approach will try to make logic's time complexity to O(N*Log(N))
- First, sort array with ascending-order.
- This takes O(N*Log(N)) in worst case.
- Use binary search to search target.[O(Log(N))]
- If there are multiple targets, find range in this case.
- Remove Target Range
- Done!
Code
class Solution {
public:
void getStartRange(int& container, int middleIndex, int& target, vector<int>& nums) {
container = -1;
while (middleIndex >= 0) {
if (nums[middleIndex] != target) {
container = middleIndex+1;
break;
}
middleIndex--;
}
if (container == -1) container = 0;
}
void getEndRange(int& container, int middleIndex, int& target, vector<int>& nums) {
container = -1;
while (middleIndex < nums.size()) {
if (nums[middleIndex] != target) {
container = middleIndex-1;
break;
}
middleIndex++;
}
if (container == -1) container = nums.size()-1;
}
int removeElement(vector<int>& nums, int val) {
if (nums.empty()) {
return 0;
}
sort(nums.begin(), nums.end());
int start = 0;
int end = nums.size()-1;
int middleIndex = (start + end) / 2;
int eraseStart = -1;
int eraseEnd = -1;
while (start <= end) {
middleIndex = (start + end) / 2;
if (nums[middleIndex] < val) {
start = middleIndex+1;
} else if (nums[middleIndex] > val) {
end = middleIndex-1;
} else {
getStartRange(eraseStart, middleIndex, val, nums);
getEndRange(eraseEnd, middleIndex, val, nums);
break;
}
}
if (eraseStart != -1 && eraseEnd != -1) {
nums.erase(nums.begin()+eraseStart, nums.begin()+eraseEnd+1);
}
return nums.size();
}
};
Submission

