최적화란? Optimization
Find an optimzation valiable that minimizes (or maximizes) an objective function possible given constraints(s)
- 목적 함수를 최소화 혹은 최대화 하는 최적화 변수를 찾는 과정이라고 한다.
- 이러저러한 역사 이야기는 skip...
Gauss's problem
xmini=1∑m∣∣Aix−bi∣∣2
위의 식을 아래의 식들로 표현
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣⎣⎢⎢⎢⎢⎢⎡A1x−b1...Amx−bm⎦⎥⎥⎥⎥⎥⎤∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣2
해당 문제들을 "least-squares" problem 이라한다고 한다.
아래의 특징을 지닌다
- Closed-form solution: x∗=(ATA)−1ATb
- Efficient method to compute the solution (솔루션을 계산하기에 효과적인 메소드)
그래서 ...
- Tired to translate an interested problem to a least-squares problem
- However: Encountered many situations in which translation is not doable
Linear Program
- WW2 때 나온 개념
- to solve a military-related problem during WW2
- Find Optimal planning of expenditures-returns of soldiers (지출-비용 문제)
- No closed form solution for LP.
Recall definition
- find optiomaztion variable that minimize (or maximize)
- an objective function
- possible given constraints(s)
Optimazation variable: x∈Rd
Objective function: f(x)∈R
Inequality constraint: fi(x)≤0i i=1,...,m
Equality contraint: hi(x)=0 i=1,...,p
위의 정의를 아래의 식처럼 표현할 수 있다
x∗:=argminf(x):fi(x)≤0,hi(x)=0
p∗:=f(x∗)
x : Optimal point(?)
p : Optimal value
Convex set
- Definition : A set S is said to be convex if ...
- 아래식 만족하면 convex set이다
x,y∈S⇒λx+(1−λ)y∈S ∇λ∈[0,1]

- 차원이 달라져도 표현은 같다.
S=x:Ax−b≤0
Convex function
- x,y∈domf: ∀λ∈[0,1]
- $dom f convex set
- convex means bowl-shaped


Concave
- f(x) is concave if −f(x) is convex
Affine
- f(x) is affine if it is convex & concave
Convex Optimazation
- Object function is convex
- the set induced by inequality constraints is convex
- the set induced by equality constraints is convex