Saliency Detection은 이미지나 영상에서 사람의 시각적 주의를 끌 만한 중요한 부분을 자동으로 식별하는 기술입니다. 이 기술은 컴퓨터 비전, 이미지 처리, 객체 인식 등 다양한 분야에서 활용됩니다. 주목할 만한 영역을 강조하여 분석 및 처리의 효율성을 높이고, 불필요한 정보를 제거하는 데 도움을 줍니다.
https://pyimagesearch.com/2018/07/16/opencv-saliency-detection/
import cv2
import numpy as np
import matplotlib.pyplot as plt
# OpenCV를 사용한 간단한 Saliency Detection 예제
image = cv2.imread('example.jpg')
saliency = cv2.saliency.StaticSaliencySpectralResidual_create()
(success, saliencyMap) = saliency.computeSaliency(image)
saliencyMap = (saliencyMap * 255).astype("uint8")
# 결과 출력
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.title('Original Image')
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.axis('off')
plt.subplot(1, 2, 2)
plt.title('Saliency Map')
plt.imshow(saliencyMap, cmap='gray')
plt.axis('off')
plt.show()
Itti, Laurent, Christof Koch, and Ernst Niebur. "A model of saliency-based visual attention for rapid scene analysis." IEEE Transactions on Pattern Analysis and Machine Intelligence 20.11 (1998): 1254-1259.
Hou, Xiaodi, and Liqing Zhang. "Saliency detection: A spectral residual approach." 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2007.
Wang, Lijun, et al. "Deep networks for saliency detection via local estimation and global search." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015.
Li, Guanbin, et al. "Deep visual saliency detection via progressive representation learning." IEEE Transactions on Image Processing 28.1 (2018): 428-438.