완전 이진 트리의 일종으로 우선순위 큐를 위하여 만들어진 자료구조
최댓값, 최솟값을 쉽게 추출할 수 있는 자료구조
/* 현재 요소의 개수가 heap_size인 힙 h에 item을 삽입한다. */
// 최대 힙(max heap) 삽입 함수
void insert_max_heap(HeapType *h, element item){
int i;
i = ++(h->heap_size); // 힙 크기를 하나 증가
/* 트리를 거슬러 올라가면서 부모 노드와 비교하는 과정 */
// i가 루트 노트(index: 1)이 아니고, 삽입할 item의 값이 i의 부모 노드(index: i/2)보다 크면
while((i != 1) && (item.key > h->heap[i/2].key)){
// i번째 노드와 부모 노드를 교환환다.
h->heap[i] = h->heap[i/2];
// 한 레벨 위로 올라단다.
i /= 2;
}
h->heap[i] = item; // 새로운 노드를 삽입
}
// 최대 힙(max heap) 삭제 함수
element delete_max_heap(HeapType *h){
int parent, child;
element item, temp;
item = h->heap[1]; // 루트 노드 값을 반환하기 위해 item에 할당
temp = h->heap[(h->heap_size)--]; // 마지막 노드를 temp에 할당하고 힙 크기를 하나 감소
parent = 1;
child = 2;
while(child <= h->heap_size){
// 현재 노드의 자식 노드 중 더 큰 자식 노드를 찾는다. (루트 노드의 왼쪽 자식 노드(index: 2)부터 비교 시작)
if( (child < h->heap_size) && ((h->heap[child].key) < h->heap[child+1].key) ){
child++;
}
// 더 큰 자식 노드보다 마지막 노드가 크면, while문 중지
if( temp.key >= h->heap[child].key ){
break;
}
// 더 큰 자식 노드보다 마지막 노드가 작으면, 부모 노드와 더 큰 자식 노드를 교환
h->heap[parent] = h->heap[child];
// 한 단계 아래로 이동
parent = child;
child *= 2;
}
// 마지막 노드를 재구성한 위치에 삽입
h->heap[parent] = temp;
// 최댓값(루트 노드 값)을 반환
return item;
}
배열에 9, 7, 6, 5, 4, 3, 2, 2, 1, 3이 저장되어 있다고 가정하고 자료를 내림차순으로 정렬해 보자.
위의 최대 힙(max heap)의 삽입, 삭제 c언어 코드를 참고하자.
// 우선순위 큐인 힙을 이용한 정렬
void heap_sort(element a[], int n){
int i;
HeapType h;
init(&h);
for(i=0; i<n; i++){
insert_max_heap(&h, a[i]);
}
for(i=(n-1); i>=0; i--){
a[i] = delete_max_heap(&h);
}
}
시간복잡도를 계산한다면