For each date_id and make_name, find the number of distinct lead_id's and distinct partner_id's.
Return the result table in any order.

select date_id
, make_name
, count(distinct lead_id) as unique_leads
, count(distinct partner_id) as unique_partners
from DailySales
group by date_id, make_name
import pandas as pd
def daily_leads_and_partners(daily_sales: pd.DataFrame) -> pd.DataFrame:
result = daily_sales.groupby(['date_id', 'make_name']).agg(
unique_leads=('lead_id', 'nunique'),
unique_partners=('partner_id', 'nunique')
).reset_index()
return result
reset_index()를 하는 이유
groupby를 하면 pandas는 기본적으로 그룹 기준 컬럼(date_id, make_name)을 인덱스로 만들기 때문에 date_id와 make_name을 일반 컬럼으로 되돌려야 함.
df.groupby([group_cols]).agg(
new_col1=('col1', 'func1'),
new_col2=('col2', 'func2'),
...
)