[Day2] 이진 탐색 트리 (Binary Search Trees) - 2부

승준·2021년 4월 23일
0

이진 탐색 트리 (Binary Search Trees) - 2부

이진 탐색 트리에서 원소 삭제

  1. 키(key)를 이용해서 노드를 찾는다

    • 만약 해당 키의 노드가 없으면 삭제할 것이 없음
    • 노드가 있으면 찾은 노드의 부모 노드도 알고 있어야 함
  2. 찾은 노드를 제거하고도 이진 탐색 트리 성질을 만족하도록 트리의 구조를 정리

인터페이스 설계

입력: 키 (Key)

출력: 삭제한 경우 True, 해당 키의 노드가 없는 경우 False

class Node:
  def remove(self, key):
        node, parent = self.lookup(key)
        if node:

            return True
        else:
            return False

이진 탐색 트리 구조의 유지

삭제되는 노드가

  1. 말단(leaf) 노드 인경우

    1. 그냥 그 노드를 없애면 됨

      -> 부모 노드의 링크를 조정(좌? 우?를 판단후)

  2. 자식을 하나 가지고 있는 경우

    1. 자식이 왼쪽? 오른쪽 판단(자식을 삭제된 노드 위치로 붙히기 위해)
    2. 부모의 노드의 링크를 조정(좌, 우 판단)
  3. 자식을 둘 가지고 있는 경우

    1. 삭제되는 노드보다 바로 다음 (큰) 키를 가지는 노드를 찾아 그 노드를 삭제되는 노드 자리에 대신 배치하고 이 노드를 대신 삭제

우선 자식을 세어 보자

특정한 노드가 몇 개의 자식을 갖고 있는지 세어 보는 코드를 작성

class Node:
    def countChildren(self):
        count = 0
        if self.left:
            count += 1
        if self.right:
            count += 1
        return count

밑단 노드(leaf)의 삭제

가장 간단한 단계인 leaf 노드를 삭제하는 경우를 살펴 보자. 부모노드를 P, 삭제 하려는 노드를 X라고 표시 했다. X가 P노드의 왼쪽자식, 오른쪽 자식인 경우가 존재 한다. 이런 경우, 그냥 X라는 노드를 삭제하면 되기 때문에 P노드만 남게 된다.

image-20210423101234007

lookup 메소드를 통해 P노드를 알아내고. 왼쪽, 오른쪽 인지 여부를 파악하고 None 값을 대입한다.

삭제된는 노드(X)가 root node인 경우?

노드가 1개 임으로, 트리 전체가 삭제 된다.

예제

노드 X의 부모 노드인 P를 찾고 오른쪽을 None 으로 만들면 노드를 삭제 할 수 있다. 중요한 점은 삭제후에도 이진 탐색 트리 성질을 만족 한다는 것이다.(왼쪽 서브 트리가 자기 자신보다 작고 오른쪽은 큰)

image-20210423101506673

자식이 하나인 노드 삭제

노드 X를 삭제 하고자 한다. 그림과 같이 C노드(자식 한개)를 갖고 있는 형태 이다. X를 삭제 해도 이진 탐색 트리 성질을 만족하게 된다. 그냥 X노드를 삭제하고 그 자리에 C를 집어 넣어 주면 된다. 단, 자식이 왼쪽, 오른쪽인지 여부를 파악하고 붙혀야 한다. 그렇기 때문에 P를 찾아 왼쪽인지 오른쪽인지 알고 있어야 한다.

image-20210423101753648

삭제되는 node가 root node인 경우

대신 들어오는 자식이 새로 root가 된다.

예제

X 노드를 삭제하기 이전에 부모 노드인 P에 어느쪽(오른쪽, 왼쪽)에 있는지를 파악하고, 그 자리에 C를 붙혀 넣는다.

image-20210423102100653

image-20210423102153116

자식이 둘인 노드의 삭제

예제1

S가 왼쪽에서 발견

노드 5의 경우 자식이 2와 8로 두 개인 경우이다. 5보다 한단계 큰 노드를 찾아서 대신 가져다 놔야 한다. 그런 노드를 찾아야 한다.

image-20210423102236202

즉, 오른쪽 Subtree에서 가장 작은 노드를 찾아야 한다. 이를 S라고 표현하고, S에 대한 부모를 P라고 한다.

image-20210423102634566

찾은 S를 X로 대체하고, 기존의 6(S)를 삭제한다.

image-20210423102713804

예제2

S가 오른쪽에서 발견

이번에는 8을 삭제하는 경우에 조금 달라진다. 8에서 한단계 큰 노드인 9를 S라고 한다. 위와 같이 S의 부모를 P라고 하면 P와 X가 같게된다 P==X.

image-20210423102829297

예제1에서는 P노드 기준 왼쪽 노드를 제거 했지만, S가 왼쪽에서 발견되는 경우, P의 오른쪽을 삭제 한다.

image-20210423103001637

image-20210423103223863

이진탐색트리가 비효울적이지 못한 경우

  • 순서대로 삽입하는 경우 효율적이지 못하다
  • 한쪽으로 치우치는 모양

이런 경우, 선형 탐색과 동일한 구조를 갖게 된다. 이럴경우 lognlogn의 탐색 복잡도를 갖을 수 없게 된다

image-20210423103407640

해결책

AVL tree

AVL 트리

Red black tree

레드-블랙 트리

profile
내일을 기록하기 위해서 오늘을 기록합니다 🤗

0개의 댓글