[Day2] 트리(Trees)

승준·2021년 4월 23일
0

트리(Trees)

데이터의 검색과 탐색에 아주 널리 이용되는 자료 구조로서 트리 (tree) 라는 것이 있습니다. 우리 말로 "나무" 라고 번역하기도 하는데, 대부분의 경우에는 그냥 "트리" 라고 부릅니다. 트리를 딱딱하게 말하면, 순환하는 길이 없는 그래프 (graph) 로 정의합니다.

image

  • 정점(node)과 간선(edge)을 이용하여 데이터의 배치 형태를 추상화한 자료 구조

트리 용어

부모(Parent)노드와 자식(Child)노드

image

노드의 수준(Level)

  • 트리의 높이(Height) = 최대 수준(level) + 1
  • 이를 깊이라고도 한다.

image

image

부분 트리(서브트리 - Subtree)

트리는 여러개의 서브 트리로 구성 될 수 있다.

image

노드의 차수(Degree)

= 자식 (서브트리)의 수

img


이진 트리(binary trees)

  • 모든 노드의 차수(degree)가 2이하인 트리
  • 빈 트리(empty tree)도 이진 트리다.

재귀속성

재귀적으로 정의 할 수 잇다.

  • 루트 노드 + 왼쪽 서브트리 + 오른쪽 서브트리
    (단, 이 때 왼쪽과 오른쪽 서브트리 또한 이진 트리→ 재귀 속성의 종료 조건)

image

포화 이진 트리(full binary tree)

모든 레벨에서의 노드들이 모두 채워져 있는 이진트리를 말한다. 포화 이진 트리는 높이가 K이고 노드의 개수가 2K12^K -1개인 이진트리라는 속성을 가진다

image

완전 이진 트리(complete binary tree)

  • 높이 kk인 완전 이진트리는 레벨 k2k-2까지는 모든 노드가 2개의 자식을 가진 포화 이진트리로 구성
  • 단, 마지막 레벨 k1k-1에 풀로 채워져 있지 않더라도 왼쪽부터 노드가 순차적으로 채워져 있다면
    완전 이진 트리(complete binary tree)

img

profile
내일을 기록하기 위해서 오늘을 기록합니다 🤗

0개의 댓글