다이나믹 프로그래밍(DP, Dynamic Programming)은 문제를 해결하기 위한 하나의 접근 방식으로, 복잡한 문제를 더 작은 하위 문제로 나누어 해결하고 그 결과를 저장하여 반복적인 계산을 피하는 최적화 기법입니다. 주로 재귀적 또는 반복적 방식으로 문제를 해결하며, 이미 계산된 값을 재사용함으로써 중복 계산을 방지하는 것이 특징입니다.
import java.util.HashMap;
public class Fibonacci {
private static HashMap<Integer, Integer> memo = new HashMap<>();
public static int fib(int n) {
if (n <= 1) return n;
if (memo.containsKey(n)) return memo.get(n);
int result = fib(n - 1) + fib(n - 2);
memo.put(n, result);
return result;
}
public static void main(String[] args) {
System.out.println(fib(10)); // Output: 55
}
}
public class LCS {
public static int lcs(String s1, String s2) {
int[][] dp = new int[s1.length() + 1][s2.length() + 1];
for (int i = 1; i <= s1.length(); i++) {
for (int j = 1; j <= s2.length(); j++) {
if (s1.charAt(i - 1) == s2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[s1.length()][s2.length()];
}
public static void main(String[] args) {
System.out.println(lcs("ABCBDAB", "BDCAB")); // Output: 4
}
}
import java.util.Arrays;
public class LIS {
public static int lis(int[] arr) {
int[] dp = new int[arr.length];
Arrays.fill(dp, 1);
for (int i = 1; i < arr.length; i++) {
for (int j = 0; j < i; j++) {
if (arr[i] > arr[j]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
}
return Arrays.stream(dp).max().orElse(1);
}
public static void main(String[] args) {
int[] arr = {10, 22, 9, 33, 21, 50, 41, 60, 80};
System.out.println(lis(arr)); // Output: 6
}
}
public class Knapsack {
public static int knapsack(int[] weights, int[] values, int capacity) {
int n = weights.length;
int[][] dp = new int[n + 1][capacity + 1];
for (int i = 1; i <= n; i++) {
for (int w = 0; w <= capacity; w++) {
if (weights[i - 1] <= w) {
dp[i][w] = Math.max(dp[i - 1][w], dp[i - 1][w - weights[i - 1]] + values[i - 1]);
} else {
dp[i][w] = dp[i - 1][w];
}
}
}
return dp[n][capacity];
}
public static void main(String[] args) {
int[] weights = {1, 3, 4, 5};
int[] values = {1, 4, 5, 7};
int capacity = 7;
System.out.println(knapsack(weights, values, capacity)); // Output: 9
}
}
public class EditDistance {
public static int editDistance(String s1, String s2) {
int[][] dp = new int[s1.length() + 1][s2.length() + 1];
for (int i = 0; i <= s1.length(); i++) {
for (int j = 0; j <= s2.length(); j++) {
if (i == 0) {
dp[i][j] = j;
} else if (j == 0) {
dp[i][j] = i;
} else if (s1.charAt(i - 1) == s2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = 1 + Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1]));
}
}
}
return dp[s1.length()][s2.length()];
}
public static void main(String[] args) {
System.out.println(editDistance("kitten", "sitting")); // Output: 3
}
}
public class CoinChange {
public static int coinChange(int[] coins, int amount) {
int[] dp = new int[amount + 1];
Arrays.fill(dp, amount + 1);
dp[0] = 0;
for (int coin : coins) {
for (int i = coin; i <= amount; i++) {
dp[i] = Math.min(dp[i], dp[i - coin] + 1);
}
}
return dp[amount] > amount ? -1 : dp[amount];
}
public static void main(String[] args) {
int[] coins = {1, 2, 5};
int amount = 11;
System.out.println(coinChange(coins, amount)); // Output: 3
}
}
public class MaximumSubarraySum {
public static int maxSubArray(int[] nums) {
int maxSoFar = nums[0];
int currentMax = nums[0];
for (int i = 1; i < nums.length; i++) {
currentMax = Math.max(nums[i], currentMax + nums[i]);
maxSoFar = Math.max(maxSoFar, currentMax);
}
return maxSoFar;
}
public static void main(String[] args) {
int[] nums = {-2, 1, -3, 4, -1, 2, 1, -5, 4};
System.out.println(maxSubArray(nums)); // Output: 6
}
}
import java.util.*;
public class Dijkstra {
public static int[] dijkstra(int[][] graph, int src) {
int n = graph.length;
int[] dist = new int[n];
boolean[] visited = new boolean[n];
Arrays.fill(dist, Integer.MAX_VALUE);
dist[src] = 0;
PriorityQueue<int[]> pq = new PriorityQueue<>(Comparator.comparingInt(a -> a[1]));
pq.add(new int[]{src, 0});
while (!pq.isEmpty()) {
int[] node = pq.poll();
int u = node[0];
if (visited[u]) continue;
visited[u] = true;
for (int v = 0; v < n; v++) {
if (graph[u][v] != 0 && !visited[v] && dist[u] + graph[u][v] < dist[v]) {
dist[v] = dist[u] + graph[u][v];
pq.add(new int[]{v, dist[v]});
}
}
}
return dist;
}
public static void main(String[] args) {
int[][] graph = {
{0, 10, 0, 30, 100},
{10, 0, 50, 0, 0},
{0, 50, 0, 20, 10},
{30, 0, 20, 0, 60},
{100, 0, 10, 60, 0}
};
int[] dist = dijkstra(graph, 0);
System.out.println(Arrays.toString(dist)); // Output: [0, 10, 50, 30, 60]
}
}