import lightgbm as lgb
import numpy as np
from sklearn.datasets import load_iris
model_file = "model.bst"
lgb_model = lgb.Booster(model_file=model_file)
iris = load_iris()
X_test = iris['data']
y_test = iris['target']
predictions = lgb_model.predict(X_test)
predicted_classes = np.argmax(predictions, axis=1)
print("Predicted probabilities:\n", predictions)
print("Predicted classes:\n", predicted_classes)
print("True classes:\n", y_test)
accuracy = np.mean(predicted_classes == y_test)
print(f"Accuracy: {accuracy * 100:.2f}%")