다익스트라 최단 경로 알고리즘은 그래프에서 여러 개의 노드가 있을 때, 특정한 노드에서 출발하여 다른 노드로 가는 각각의 최단 경로를 구해주는 알고리즘이다. 다익스트라 최단 경로 알고리즘은 '음의 간선'이 없을 때 정상적으로 동작한다. 음의 간선이랑 0보다 작은 값을 가지는 간선을 의미하는데, 현실 세계의 길(간선)은 음의 간선으로 표현되지 않으므로 다익스트라 알고리즘은 실제로 GPS 소프트웨어의 기본 알고리즘으로 채택되곤 한다.
다익스트라 최단 경로 알고리즘은 기본적으로 그리디 알고리즘으로 분류된다. 매번 '가장 비용이 적은 노드'를 선택해서 임의의 과정을 반복하기 때문이다.
다익스트라 알고리즘은 최단 경로를 구하는 과정에서 각 노드에 대한 현재까지의 최단 거리
정보를 항상 1차원 리스트에 저장하며 리스트를 계속 갱신한다는 특징이 있다. 매번 현재 처리하고 있는 노드를 기준으로 주변 간선을 확인한다. 나중에 현재 처리하고 있는 노드와 인접한 노드로 도달하는 더 짧은 경로를 찾으면 더 짧은 경로도 있었네? 이제부터는 이 경로가 제일 짧은 경로야 라고 판단 하는 것이다. 따라서 방문하지 않은 노드 중에서 현재 최단 거리가 가장 짧은 노드를 확인해 그 노드에 대하여 4번 과정을 수행한다는 점에서 그리디 알고리즘으로 볼 수 있다.
간단한 다익스트라 알고리즘은 O(V2)의 시간복잡도를 가지며, 다익스트라에 의해서 처음 고안되었던 알고리즘이다. 여기서 V는 노드의 개수를 의미한다.
import sys
input = sys.stdin.readline
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정
# 노드의 개수, 간선의 개수를 입력받기
n, m = map(int, input().split())
# 시작 노드 번호를 입력받기
start = int(input())
# 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트를 만들기
graph = [[] for i in range(n+1)]
# 방문한 적이 있는지 체크하는 목적의 리스트를 만들기
visited = [False] * (n+1)
# 최단 거리 테이블을 모두 무한으로 초기화
distance = [INF] * (n+1)
# 모든 간선 정보를 입력받기
for _ in range(m):
a, b, c = map(int, input().split())
# a번 노드에서 b번 노드로 가는 비용이 c라는 의미
graph[a].append((b,c))
# 방문하지 않는 노드 중에서, 가장 최단 거리가 짧은 노드의 번호를 반환
def get_smallest_node():
min_value = INF
index = 0
for i in range(1, n+1):
if distance[i] < min_value and not visited[i]:
min_value = distance[i]
index = i
return index
def dijkstra(start):
# 시작 노드에 대해서 초기화
distance[start] = 0
visited[start] = True
for j in graph[start]:
distance[j[0]] = j[1]
# 시작 노드를 제외한 전체 n-1개의 노드에 대해 반복
for i in range(n-1):
# 현재 최단 거리가 가장 짧은 노드를 꺼내서, 방문 처리
now = get_smallest_node()
visited[now] = True
# 현재 노드와 연결된 다른 노드를 확인
for j in graph[now]:
cost = distance[now] + j[1]
# 현재 노드를 거쳐서 다른 노드로 이동하는 거리가 더 짧은 경우
if cost < distance[j[0]]:
distance[j[0]] = cost
dijkstra(start)
# 모든 노드로 가기 위한 최단 거리를 출력
for i in range(1, n+1):
# 도달할 수 없는 경우, 무한(INFINITY)라고 출력
if distance[i] == INF:
print("INFINITY")
# 도달할 수 있는 경우 거리를 출력
else:
print(distance[i])
개선된 알고리즘의 시간 복잡도는 O(ElogV)를 보장하여 해결가능한다. 여기서 V는 노드의 개수이고, E는 간선의 개수를 의미한다.
개선된 다익스트라 알고리즘에서는 힙Heap자료구조를 사용한다. 힙 자료구조를 이용하게 되면 특정 노드까지의 최단 거리에 대한 정보를 힙에 담아서 처리하므로 출발 노드로부터 가장 거리가 짧은 노드를 더욱 빠르게 찾을 수 있다. 이 과정에서 선형 시간이 아닌 로그 시간이 걸린다. N = 1,000,000일 때, log2N이 약 20인 것을 감안하면 속도가 획기적으로 빨라지는 것임을 이해할 수 있다.
힙 자료구조는 우선순위 큐Priority Queue를 구현하기 위하여 사용하는 자료구조중 하나다. DFS/BFS
를 공부할 때 스택과 큐의 원리에 대해서 알아보았다. 스택은 가장 나중에 삽입된 데이터를 가장 먼저 삭제하고, 큐는 가장 먼저 삽입된 데이터를 가장 먼저 삭제한다. 우선순위 큐는 우선순위가 가장 높은 데이터를 가장 먼저 삭제 한다는 점이 특징이다.
파이썬에서는 우선순위 큐가 필요할 때 PriorityQueue 혹은 heapq를 이용할 수 있는데, 일반적으로 heapq가 더 빠르게 동작하기 때문에 수행 시간이 제한된 상황에서는 heapq를 사용하는 것을 권장한다. 우선순위 값을 표현할 때는 정수형 자료형의 변수가 사용된다. 대부분의 프로그래밍 언어에서는 우선순위 큐 라이브러리에 데이터의 묶음을 넣으면, 첫 번째 원소를 기준으로 우선순위를 설정한다. 따라서 데이터가 (가치, 물건)으로 구성된다면 가치 값이 우선순위 값이 되는 것이다.
import heapq
import sys
input = sys.stdin.readline
INF = int(1e9)
n, m = map(int, input().split())
start = int(input())
graph = [[] for i in range(n+1)]
distance = [InF] * (n + 1)
for _ in range(m):
a, b, c = map(int, input().split())
graph[a].append((b,c))
def dijkstra(start):
q = []
# 시작 노드로 가기 위한 최단 경로는 0으로 설정하여, 큐에 삽입
heapq.heappush(q, (0, start))
distance[start] = 0
while q:
# 가장 최단 거리가 짧은 노드에 대한 정보 꺼내기
dist, now = heapq.heappop(q)
# 현재 노드가 이미 처리된 적이 있는 노드라면 무시
if distance[now] < dist:
continue
# 현재 노드와 연결된 다른 인접한 노드들을 확인
for i in graph[now]:
cost = dist + i[1]
# 현재 노드를 거쳐서, 다른 노드로 이동하는 거리가 더 짧은 경우
if cost < distance[i[0]]:
distance[i[0]] = cost
heapq.heappush(q, (cost, i[0]))
dijkstra(start)
for i in range(1, n+1):
if distance[i] == INF:
print("INFINITY")
else:
print(distance[i])