Given an m x n
matrix board where each cell is a battleship 'X'
or empty '.'
, return the number of the battleships on board
.
Battleships can only be placed horizontally or vertically on board
. In other words, they can only be made of the shape 1 x k
(1
row, k
columns) or k x 1
(k
rows, 1
column), where k
can be of any size. At least one horizontal or vertical cell separates between two battleships (i.e., there are no adjacent battleships).
Example 1:
Input: board = [["X",".",".","X"],[".",".",".","X"],[".",".",".","X"]]
Output: 2
Example 2:
Input: board = [["."]]
Output: 0
Constraints:
m == board.length
n == board[i].length
1 <= m, n <= 200
board[i][j]
is either '.'
or 'X'
.Follow up: Could you do it in one-pass, using only O(1) extra memory and without modifying the values board?
그래프 탐색 기초문제라고 볼 수 있을 것 같다.
class Solution:
def countBattleships(self, board: List[List[str]]) -> int:
m, n = len(board), len(board[0])
answer = 0
def bfs(x, y):
q = collections.deque([[x, y]])
while q:
x, y = q.popleft()
for dx, dy in ((0, -1), (0, 1), (-1, 0), (1, 0)):
nx = x + dx
ny = y + dy
if 0 <= nx < m and 0 <= ny < n and board[nx][ny] == "X":
q.append([nx, ny])
board[nx][ny] = "."
return 1
for i in range(m):
for j in range(n):
if board[i][j] == "X":
answer += bfs(i, j)
return answer
추가 과제는 적용되지 않은 풀이이다.
O(1)
의 추가 메모리를 사용하여 문제를 해결해야 하는데... 다음에 다시 풀어봐야지