A non-empty array A consisting of N integers is given. A pair of integers (P, Q), such that 0 ≤ P < Q < N, is called a slice of array A (notice that the slice contains at least two elements). The average of a slice (P, Q) is the sum of A[P] + A[P + 1] + ... + A[Q] divided by the length of the slice. To be precise, the average equals (A[P] + A[P + 1] + ... + A[Q]) / (Q − P + 1).
For example, array A such that:
A[0] = 4
A[1] = 2
A[2] = 2
A[3] = 5
A[4] = 1
A[5] = 5
A[6] = 8
contains the following example slices:
The goal is to find the starting position of a slice whose average is minimal.
Write a function:
int solution(vector &A);
that, given a non-empty array A consisting of N integers, returns the starting position of the slice with the minimal average. If there is more than one slice with a minimal average, you should return the smallest starting position of such a slice.
For example, given array A such that:
A[0] = 4
A[1] = 2
A[2] = 2
A[3] = 5
A[4] = 1
A[5] = 5
A[6] = 8
the function should return 1, as explained above.
Write an efficient algorithm for the following assumptions:
#include <algorithm>
int solution(vector<int> &A) {
float minAvg = (A[0] + A[1]) / 2;
int minIdx = 0;
for (int i = 2; i < A.size(); i++) {
float avg = (float)(A[i-2] + A[i-1] + A[i]) / (float)3;
if (minAvg > avg) {
minAvg = avg;
minIdx = i - 2;
}
avg = (float)(A[i-1] + A[i]) / (float)2;
if (minAvg > avg) {
minAvg = avg;
minIdx = i - 1;
}
}
return minIdx;
}
수학적 지식이 있어야 100% 정답을 볼 수 있는 문제였다.. ㅜ
4개 이상의 원소는 고려할 필요 없는 문제이다.
2개와 3개일 때만 고려하면 된다.