You are given N counters, initially set to 0, and you have two possible operations on them:
A non-empty array A of M integers is given. This array represents consecutive operations:
For example, given integer N = 5 and array A such that:
A[0] = 3
A[1] = 4
A[2] = 4
A[3] = 6
A[4] = 1
A[5] = 4
A[6] = 4
the values of the counters after each consecutive operation will be:
(0, 0, 1, 0, 0)
(0, 0, 1, 1, 0)
(0, 0, 1, 2, 0)
(2, 2, 2, 2, 2)
(3, 2, 2, 2, 2)
(3, 2, 2, 3, 2)
(3, 2, 2, 4, 2)
The goal is to calculate the value of every counter after all operations.
Write a function:
class Solution { public int[] solution(int N, int[] A); }
that, given an integer N and a non-empty array A consisting of M integers, returns a sequence of integers representing the values of the counters.
Result array should be returned as an array of integers.
For example, given:
A[0] = 3
A[1] = 4
A[2] = 4
A[3] = 6
A[4] = 1
A[5] = 4
A[6] = 4
the function should return [3, 2, 2, 4, 2], as explained above.
Write an efficient algorithm for the following assumptions:
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
vector<int> solution(int N, vector<int> &A) {
vector<int> v(N);
int max = 0, tmpMax = 0;
fill(v.begin(), v.end(), 0);
for(int i=0;i<A.size();i++) {
if(A[i] == N+1) {
max = tmpMax;
}
else {
// max보다 작으면 max+1
if(v[A[i]-1] < max) {
v[A[i]-1] = max+1;
}
// max 이상이면 +1
else {
v[A[i]-1]++;
}
// 최댓값 갱신
if(v[A[i]-1] > tmpMax) {
tmpMax = v[A[i]-1];
}
}
}
for(int i=0;i<N;i++){
// max보다 작은 값들 max로 채움
if(v[i] < max) {
v[i] = max;
}
}
return v;
}
max counter일 때(N+1) max로 모든 값을 갱신해주는 방식으로 풀었더니 Performance 부분에서 오답 처리가 되었다.
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
vector<int> solution(int N, vector<int> &A) {
vector<int> v(N);
int max = 0;
fill(v.begin(), v.end(), 0);
for(int i=0;i<A.size();i++) {
int a = A[i];
if(a == N+1) {
fill(v.begin(), v.end(), max);
}
else {
v[a-1] += 1;
if(v[a-1] > max) {
max = v[a-1];
}
}
}
return v;
}