동작 과정
1. 출발 노드를 설정
2. 최단 거리 테이블을 초기화
3. 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드를 선택
4. 해당 노드를 거쳐 다른 노드로 가는 비용을 계산하여 최단 거리 테이블을 갱신
5. 위 과정에서 3번 4번 반복
import sys
input = sys.stdin.readline
INF = int(1e9) #무한을 의미하는 값으로 10억 설정
#노드의 개수, 간선의 개수를 입력받기
n, m = map(int, input().split())
#시작 노드 번호를 입력받기
start = int(input())
#각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트를 만들기
graph = [[] for i in range(n + 1)]
#방문한 적이 있는지 체크하는 목적의 리스트 만들기
visited = [False] * (n + 1)
#최단 거리 테이블을 모두 무한으로 초기화
distance = [INF] * (n + 1)
#모든 간선 정보를 입력받기
for _ in range(m):
a, b, c = map(int, input().split())
# a번 노드에서 b번 노드로 가는 비용이 c라는 의미
graph[a].append((b, c))
# 방문하지 않은 노드중에서, 가장 최단거리가 짧은 노드 번호 반환
def get_smallest_node():
min_value = INF
index = 0 #가장 최단 거리가 짧은 노드(인덱스)
for i in range(1, n + 1):
if distance[i] < min_value and not visited[i]:
min_value = distance[i]
index = i
return index
def dijkstra(start):
#시작 노드에 대해서 초기화
distance[start] = 0
visited[start] = True
for j in graph[start]:
distance[j[0]] = j[1]
#시작 노드를 제외한 전체 n - 1개의 노드에 대해 반복
for i in range(n - 1):
#현재 최단 거리가 가장 짧은 노드를 꺼내서, 방문처리
now = get_smallest_node()
visited[now] = True
#현재 노드와 연결된 다른 노드를 확인
for j in graph[now]:
cost = distance[now] + j[1]
#현재 노드를 거쳐서 다른 노드로 이동하는 거리가 더 짧은 경우
if cost < distance[j[0]]:
distance[j[0]] = cost
# 다익스트라 알고리즘을 수행
dijkstra(start)
#모든 노드로 가기 위한 최단 거리를 출력
for i in range(1, n + 1):
#도달할 수 없는 경우, 무한이라고 출력
if distance[i] == INF:
print("INFINITY")
#도달할 수 있는 경우 거리를 출력
else:
print(distance[i])
하지만 노드의 개수가 10000개가 넘어가면 어떻게 해야할까?
개선된 다익스트라는 우선순위 큐 , 힙을 사용한다.
# 최소힙
import heapq
#오름차순 힙 정렬(Heap Sort)
def heapsort(iterable):
h = []
result = []
#모든 원소를 차례대로 힙에 삽입
for value in iterable:
heapq.heappush(h, value)
#힙에 삽입된 모든 원소를 차례대로 꺼내어 담기
for i in range(len(h)):
result.append(heapq.heappop(h))
return result
result = heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
print(result)
# 최대힙
import heapq
#내림차순 힙 정렬(Heap Sort)
def heapsort(iterable):
h = []
result = []
#모든 원소를 차례대로 힙에 삽입
for value in iterable:
heapq.heappush(h, -value)
#힙에 삽입된 모든 원소를 차례대로 꺼내어 담기
for i in range(len(h)):
result.append(-heapq.heappop(h))
return result
result = heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
print(result)
다익스트라에서 어떻게 적용할까?
- 단계마다 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드를 선택하기 위해 힙(Heap)자료구조를 이용합니다.
- 다익스트라 알고리즘이 동작하는 기본 원리는 동일합니다.
- 현재 가장 가까운 노드를 저장해 놓기 위해서 힙 자료구조를 추가적으로 이용한다는 점이 다릅니다.
- 현재의 최단 거리가 가장 짧은 노드를 선택해야 하므로 최소 힙을 사용합니다.
# 개선된 다익스트라 알고리즘
import heapq
import sys
input = sys.stdin.readlien
INF = int(1e9) #무한을 의미하는 값으로 10억 설정
#노드의 개수, 간선의 개수 입력받기
n, m = map(int, input().split())
# 시작 노드 번호를 입력받기
start = int(input())
# 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트 만들기
graph = [[] for i in range(n + 1)]
#최단 거리 테이블을 모두 무한으로 초기화
distance = [INF] * (n + 1)
#모든 간선 정보를 입력받기
for _ in range(m):
a, b, c = map(int, input().split())
#a번 노드에서 b번 노드로 가는 비용이 c라는 의미
graph[a].append((b, c))
def dijkstra(start):
q = []
#시작 노드로 가기 위한 최단 경로는 0으로 설정하여, 큐에 삽입
heapq.heappush(q, (0, start))
distance[start] = 0
while q: #큐가 비어있지 않다면
#가장 최단 거리가 짧은 노드에 대한 정보 꺼내기
dist, now = heapq.heappop(q)
#현재 노드가 이미 처리된 적 있는 노드라면 무시
if distance[now] < dist:
continue
#현재 노드와 연결된 다른 인접한 노드들을 확인
for i in graph[now]:
cost = dist + i[1]
#현재 노드를 거쳐서, 다른 노드로 이동하는 거리가 더 짧은경우
if cost < distance[i[0]]:
distance[i[0]] = cost
heapq.heappush(q, (cost, i[0]))
#다익스트라 알고리즘을 수행
dijkstra(start)
#모든 노드로 가기 위한 최단 거리를 출력
for i in range(1, n + 1):
#도달 할 수 없는 경우, 무한(INFINITY)이라고 출력
if distance[i] == INF:
print("INFINITY")
#도달 할 수 있는 경우 거리를 출력
else:
print(distance[i])