account와 balances를 다루는 기능 제공
존재예금Existential Deposit : 한 계좌를 만들고 유지하기 위해 필요한 최소한의 잔액. 이를 통해 스토리지를 채우는 "먼지 계정"들을 방지할 수 있다. 무료 + 예약된 잔액이 이 금액보다 낮아지면 그 계좌는 죽은 것으로 여겨진다. 기능뿐만 아니라 이전 내역까지 체인 스토리지에서 지워진다.
총 발행량: 시스템에 있는 통화의 총 발행량
계정 수익 : 논스를 재설정해서 계정을 삭제하는 행동. 총 잔액이 0이 된 후에 발생한다(엄격하게 말하자면, 존재 예그몹다 적은 경우에)
무료 잔고 : 예약되지 않은 잔고의 비율. 무료잔고는 대부분의 동작에 중요한 유일한 잔고이다.
예약 잔고 : 예약 잔고는 여전히 계좌 주인에게 속해 있지만, 지연되어 있다. 예약 잔고는 여전히 지워질 수 있지만, 오직 무료 잔고가 지워진 후에만 가능하다.
불균형 : 일부 자금이 동일하고 반대되는 회계(총 발행 잔액과 계정 잔액의 차) 없이 신용 또는 차변되는 조건. 불균형을 초래하는 함수는 런타임 로직 안에서 관리할 수 있는 Imbalance trait 객체를 반환(불균형이 해소되면 총 발행과 같은 book-keeping을 자동으로 유지해야 함)
잠금: 특정 블록 번호까지 한 계정의 free balances를 특정량 잠그는 것. 동일한 자본에 대해 여러 개의 잠금이 가능하므로 스택이 아니라 오버레이된다.
Balances 팔레트는 다음과 같은 trait들의 구현을 제공하므로 중복해서 구현할 필요 없다.
Currency
(frame_support::traits::Currency) : 복제 가능한 자산 시스템을 다루는 함수ReservableCurrency
(frame_support::traits::ReservableCurrency)NamedReservableCurrency
(frame_support::traits::NamedReservableCurrency) : 한 계정에 예약될 수 있는 자산들을 다루는 함수LockableCurrency
(frame_support::traits::LockableCurrency) : 유동성 제한을 허용하는 계정들을 다루는 함수Imbalance
(frame_support::traits::Imbalance) : 총 발행량과 계정 잔액의 불균형을 다루는 함수. 함수가 새로운 기금을 만들거나 어떤 기금을 파괴할 때 사용되어야만 함transfer
- 무료 잔액(liquid free balance)을 다른 계정으로 옮김set_balance
- 주어진 계정의 잔액을 설정. 반드시 루트가 호출해야만 함Currency
trait을 사용하고, 그 타입은 Currency
에서 상속받음use frame_support::traits::Currency;
pub trait Config: frame_system::Config {
type Currency: Currency<Self::AccountId>;
}
pub type BalanceOf<T> = <<T as Config>::Currency as Currency<<T as frame_system::Config>::AccountId>>::Balance;
pub type NegativeImbalanceOf<T> = <<T as Config>::Currency as Currency<<T as frame_system::Config>::AccountId>>::NegativeImbalance;
fn main() {}
LockableCurrency
trait을 사용use frame_support::traits::{WithdrawReasons, LockableCurrency};
use sp_runtime::traits::Bounded;
pub trait Config: frame_system::Config {
type Currency: LockableCurrency<Self::AccountId, Moment=Self::BlockNumber>;
}
struct StakingLedger<T: Config> {
stash: <T as frame_system::Config>::AccountId,
total: <<T as Config>::Currency as frame_support::traits::Currency<<T as frame_system::Config>::AccountId>>::Balance,
phantom: std::marker::PhantomData<T>,
}
const STAKING_ID: [u8; 8] = *b"staking ";
fn update_ledger<T: Config>(
controller: &T::AccountId,
ledger: &StakingLedger<T>
) {
T::Currency::set_lock(
STAKING_ID,
&ledger.stash,
ledger.total,
WithdrawReasons::all()
);
// <Ledger<T>>::insert(controller, ledger);
// Commented out as we don't have access to Staking's storage here.
}
fn main() {}
Balances pallet는 GenesisConfig
에 의존
모든 계정의 총 발행된 잔액의 합은Config::Balance::max_value()
보다 작아야 함
#![cfg_attr(not(feature = "std"), no_std)]
#[macro_use]
mod tests;
mod benchmarking;
mod tests_composite;
mod tests_local;
#[cfg(test)]
mod tests_reentrancy;
pub mod weights;
pub use self::imbalances::{NegativeImbalance, PositiveImbalance};
use codec::{Codec, Decode, Encode, MaxEncodedLen};
#[cfg(feature = "std")]
use frame_support::traits::GenesisBuild;
use frame_support::{
ensure,
pallet_prelude::DispatchResult,
traits::{
tokens::{fungible, BalanceStatus as Status, DepositConsequence, WithdrawConsequence},
Currency, DefensiveSaturating, ExistenceRequirement,
ExistenceRequirement::{AllowDeath, KeepAlive},
Get, Imbalance, LockIdentifier, LockableCurrency, NamedReservableCurrency, OnUnbalanced,
ReservableCurrency, SignedImbalance, StoredMap, TryDrop, WithdrawReasons,
},
WeakBoundedVec,
};
use frame_system as system;
use scale_info::TypeInfo;
use sp_runtime::{
traits::{
AtLeast32BitUnsigned, Bounded, CheckedAdd, CheckedSub, MaybeSerializeDeserialize,
Saturating, StaticLookup, Zero,
},
ArithmeticError, DispatchError, RuntimeDebug,
};
use sp_std::{cmp, fmt::Debug, mem, ops::BitOr, prelude::*, result};
pub use weights::WeightInfo;
pub use pallet::*;
#[frame_support::pallet]
pub mod pallet {
use super::*;
use frame_support::pallet_prelude::*;
use frame_system::pallet_prelude::*;
#[pallet::config]
pub trait Config<I: 'static = ()>: frame_system::Config {
/// The balance of an account.
type Balance: Parameter
+ Member
+ AtLeast32BitUnsigned
+ Codec
+ Default
+ Copy
+ MaybeSerializeDeserialize
+ Debug
+ MaxEncodedLen
+ TypeInfo;
/// Handler for the unbalanced reduction when removing a dust account.
type DustRemoval: OnUnbalanced<NegativeImbalance<Self, I>>;
/// The overarching event type.
type Event: From<Event<Self, I>> + IsType<<Self as frame_system::Config>::Event>;
/// The minimum amount required to keep an account open.
#[pallet::constant]
type ExistentialDeposit: Get<Self::Balance>;
/// The means of storing the balances of an account.
type AccountStore: StoredMap<Self::AccountId, AccountData<Self::Balance>>;
/// Weight information for extrinsics in this pallet.
type WeightInfo: WeightInfo;
/// The maximum number of locks that should exist on an account.
/// Not strictly enforced, but used for weight estimation.
#[pallet::constant]
type MaxLocks: Get<u32>;
/// The maximum number of named reserves that can exist on an account.
#[pallet::constant]
type MaxReserves: Get<u32>;
/// The id type for named reserves.
type ReserveIdentifier: Parameter + Member + MaxEncodedLen + Ord + Copy;
}
#[pallet::pallet]
#[pallet::generate_store(pub(super) trait Store)]
pub struct Pallet<T, I = ()>(PhantomData<(T, I)>);
#[pallet::call]
impl<T: Config<I>, I: 'static> Pallet<T, I> {
/// Transfer some liquid free balance to another account.
///
/// `transfer` will set the `FreeBalance` of the sender and receiver.
/// If the sender's account is below the existential deposit as a result
/// of the transfer, the account will be reaped.
///
/// The dispatch origin for this call must be `Signed` by the transactor.
///
/// # <weight>
/// - Dependent on arguments but not critical, given proper implementations for input config
/// types. See related functions below.
/// - It contains a limited number of reads and writes internally and no complex
/// computation.
///
/// Related functions:
///
/// - `ensure_can_withdraw` is always called internally but has a bounded complexity.
/// - Transferring balances to accounts that did not exist before will cause
/// `T::OnNewAccount::on_new_account` to be called.
/// - Removing enough funds from an account will trigger `T::DustRemoval::on_unbalanced`.
/// - `transfer_keep_alive` works the same way as `transfer`, but has an additional check
/// that the transfer will not kill the origin account.
/// ---------------------------------
/// - Origin account is already in memory, so no DB operations for them.
/// # </weight>
#[pallet::weight(T::WeightInfo::transfer())]
pub fn transfer(
origin: OriginFor<T>,
dest: <T::Lookup as StaticLookup>::Source,
#[pallet::compact] value: T::Balance,
) -> DispatchResultWithPostInfo {
let transactor = ensure_signed(origin)?;
let dest = T::Lookup::lookup(dest)?;
<Self as Currency<_>>::transfer(
&transactor,
&dest,
value,
ExistenceRequirement::AllowDeath,
)?;
Ok(().into())
}
/// Set the balances of a given account.
///
/// This will alter `FreeBalance` and `ReservedBalance` in storage. it will
/// also alter the total issuance of the system (`TotalIssuance`) appropriately.
/// If the new free or reserved balance is below the existential deposit,
/// it will reset the account nonce (`frame_system::AccountNonce`).
///
/// The dispatch origin for this call is `root`.
#[pallet::weight(
T::WeightInfo::set_balance_creating() // Creates a new account.
.max(T::WeightInfo::set_balance_killing()) // Kills an existing account.
)]
pub fn set_balance(
origin: OriginFor<T>,
who: <T::Lookup as StaticLookup>::Source,
#[pallet::compact] new_free: T::Balance,
#[pallet::compact] new_reserved: T::Balance,
) -> DispatchResultWithPostInfo {
ensure_root(origin)?;
let who = T::Lookup::lookup(who)?;
let existential_deposit = T::ExistentialDeposit::get();
let wipeout = new_free + new_reserved < existential_deposit;
let new_free = if wipeout { Zero::zero() } else { new_free };
let new_reserved = if wipeout { Zero::zero() } else { new_reserved };
// First we try to modify the account's balance to the forced balance.
let (old_free, old_reserved) = Self::mutate_account(&who, |account| {
let old_free = account.free;
let old_reserved = account.reserved;
account.free = new_free;
account.reserved = new_reserved;
(old_free, old_reserved)
})?;
// This will adjust the total issuance, which was not done by the `mutate_account`
// above.
if new_free > old_free {
mem::drop(PositiveImbalance::<T, I>::new(new_free - old_free));
} else if new_free < old_free {
mem::drop(NegativeImbalance::<T, I>::new(old_free - new_free));
}
if new_reserved > old_reserved {
mem::drop(PositiveImbalance::<T, I>::new(new_reserved - old_reserved));
} else if new_reserved < old_reserved {
mem::drop(NegativeImbalance::<T, I>::new(old_reserved - new_reserved));
}
Self::deposit_event(Event::BalanceSet { who, free: new_free, reserved: new_reserved });
Ok(().into())
}
/// Exactly as `transfer`, except the origin must be root and the source account may be
/// specified.
/// # <weight>
/// - Same as transfer, but additional read and write because the source account is not
/// assumed to be in the overlay.
/// # </weight>
#[pallet::weight(T::WeightInfo::force_transfer())]
pub fn force_transfer(
origin: OriginFor<T>,
source: <T::Lookup as StaticLookup>::Source,
dest: <T::Lookup as StaticLookup>::Source,
#[pallet::compact] value: T::Balance,
) -> DispatchResultWithPostInfo {
ensure_root(origin)?;
let source = T::Lookup::lookup(source)?;
let dest = T::Lookup::lookup(dest)?;
<Self as Currency<_>>::transfer(
&source,
&dest,
value,
ExistenceRequirement::AllowDeath,
)?;
Ok(().into())
}
/// Same as the [`transfer`] call, but with a check that the transfer will not kill the
/// origin account.
///
/// 99% of the time you want [`transfer`] instead.
///
/// [`transfer`]: struct.Pallet.html#method.transfer
#[pallet::weight(T::WeightInfo::transfer_keep_alive())]
pub fn transfer_keep_alive(
origin: OriginFor<T>,
dest: <T::Lookup as StaticLookup>::Source,
#[pallet::compact] value: T::Balance,
) -> DispatchResultWithPostInfo {
let transactor = ensure_signed(origin)?;
let dest = T::Lookup::lookup(dest)?;
<Self as Currency<_>>::transfer(&transactor, &dest, value, KeepAlive)?;
Ok(().into())
}
/// Transfer the entire transferable balance from the caller account.
///
/// NOTE: This function only attempts to transfer _transferable_ balances. This means that
/// any locked, reserved, or existential deposits (when `keep_alive` is `true`), will not be
/// transferred by this function. To ensure that this function results in a killed account,
/// you might need to prepare the account by removing any reference counters, storage
/// deposits, etc...
///
/// The dispatch origin of this call must be Signed.
///
/// - `dest`: The recipient of the transfer.
/// - `keep_alive`: A boolean to determine if the `transfer_all` operation should send all
/// of the funds the account has, causing the sender account to be killed (false), or
/// transfer everything except at least the existential deposit, which will guarantee to
/// keep the sender account alive (true). # <weight>
/// - O(1). Just like transfer, but reading the user's transferable balance first.
/// #</weight>
#[pallet::weight(T::WeightInfo::transfer_all())]
pub fn transfer_all(
origin: OriginFor<T>,
dest: <T::Lookup as StaticLookup>::Source,
keep_alive: bool,
) -> DispatchResult {
use fungible::Inspect;
let transactor = ensure_signed(origin)?;
let reducible_balance = Self::reducible_balance(&transactor, keep_alive);
let dest = T::Lookup::lookup(dest)?;
let keep_alive = if keep_alive { KeepAlive } else { AllowDeath };
<Self as Currency<_>>::transfer(&transactor, &dest, reducible_balance, keep_alive)?;
Ok(())
}
/// Unreserve some balance from a user by force.
///
/// Can only be called by ROOT.
#[pallet::weight(T::WeightInfo::force_unreserve())]
pub fn force_unreserve(
origin: OriginFor<T>,
who: <T::Lookup as StaticLookup>::Source,
amount: T::Balance,
) -> DispatchResult {
ensure_root(origin)?;
let who = T::Lookup::lookup(who)?;
let _leftover = <Self as ReservableCurrency<_>>::unreserve(&who, amount);
Ok(())
}
}
#[pallet::event]
#[pallet::generate_deposit(pub(super) fn deposit_event)]
pub enum Event<T: Config<I>, I: 'static = ()> {
/// An account was created with some free balance.
Endowed { account: T::AccountId, free_balance: T::Balance },
/// An account was removed whose balance was non-zero but below ExistentialDeposit,
/// resulting in an outright loss.
DustLost { account: T::AccountId, amount: T::Balance },
/// Transfer succeeded.
Transfer { from: T::AccountId, to: T::AccountId, amount: T::Balance },
/// A balance was set by root.
BalanceSet { who: T::AccountId, free: T::Balance, reserved: T::Balance },
/// Some balance was reserved (moved from free to reserved).
Reserved { who: T::AccountId, amount: T::Balance },
/// Some balance was unreserved (moved from reserved to free).
Unreserved { who: T::AccountId, amount: T::Balance },
/// Some balance was moved from the reserve of the first account to the second account.
/// Final argument indicates the destination balance type.
ReserveRepatriated {
from: T::AccountId,
to: T::AccountId,
amount: T::Balance,
destination_status: Status,
},
/// Some amount was deposited (e.g. for transaction fees).
Deposit { who: T::AccountId, amount: T::Balance },
/// Some amount was withdrawn from the account (e.g. for transaction fees).
Withdraw { who: T::AccountId, amount: T::Balance },
/// Some amount was removed from the account (e.g. for misbehavior).
Slashed { who: T::AccountId, amount: T::Balance },
}
#[pallet::error]
pub enum Error<T, I = ()> {
/// Vesting balance too high to send value
VestingBalance,
/// Account liquidity restrictions prevent withdrawal
LiquidityRestrictions,
/// Balance too low to send value
InsufficientBalance,
/// Value too low to create account due to existential deposit
ExistentialDeposit,
/// Transfer/payment would kill account
KeepAlive,
/// A vesting schedule already exists for this account
ExistingVestingSchedule,
/// Beneficiary account must pre-exist
DeadAccount,
/// Number of named reserves exceed MaxReserves
TooManyReserves,
}
/// The total units issued in the system.
#[pallet::storage]
#[pallet::getter(fn total_issuance)]
pub type TotalIssuance<T: Config<I>, I: 'static = ()> = StorageValue<_, T::Balance, ValueQuery>;
/// The Balances pallet example of storing the balance of an account.
///
/// # Example
///
/// ```nocompile
/// impl pallet_balances::Config for Runtime {
/// type AccountStore = StorageMapShim<Self::Account<Runtime>, frame_system::Provider<Runtime>, AccountId, Self::AccountData<Balance>>
/// }
/// ```
///
/// You can also store the balance of an account in the `System` pallet.
///
/// # Example
///
/// ```nocompile
/// impl pallet_balances::Config for Runtime {
/// type AccountStore = System
/// }
/// ```
///
/// But this comes with tradeoffs, storing account balances in the system pallet stores
/// `frame_system` data alongside the account data contrary to storing account balances in the
/// `Balances` pallet, which uses a `StorageMap` to store balances data only.
/// NOTE: This is only used in the case that this pallet is used to store balances.
#[pallet::storage]
pub type Account<T: Config<I>, I: 'static = ()> =
StorageMap<_, Blake2_128Concat, T::AccountId, AccountData<T::Balance>, ValueQuery>;
/// Any liquidity locks on some account balances.
/// NOTE: Should only be accessed when setting, changing and freeing a lock.
#[pallet::storage]
#[pallet::getter(fn locks)]
pub type Locks<T: Config<I>, I: 'static = ()> = StorageMap<
_,
Blake2_128Concat,
T::AccountId,
WeakBoundedVec<BalanceLock<T::Balance>, T::MaxLocks>,
ValueQuery,
>;
/// Named reserves on some account balances.
#[pallet::storage]
#[pallet::getter(fn reserves)]
pub type Reserves<T: Config<I>, I: 'static = ()> = StorageMap<
_,
Blake2_128Concat,
T::AccountId,
BoundedVec<ReserveData<T::ReserveIdentifier, T::Balance>, T::MaxReserves>,
ValueQuery,
>;
/// Storage version of the pallet.
///
/// This is set to v2.0.0 for new networks.
#[pallet::storage]
pub(super) type StorageVersion<T: Config<I>, I: 'static = ()> =
StorageValue<_, Releases, ValueQuery>;
#[pallet::genesis_config]
pub struct GenesisConfig<T: Config<I>, I: 'static = ()> {
pub balances: Vec<(T::AccountId, T::Balance)>,
}
#[cfg(feature = "std")]
impl<T: Config<I>, I: 'static> Default for GenesisConfig<T, I> {
fn default() -> Self {
Self { balances: Default::default() }
}
}
#[pallet::genesis_build]
impl<T: Config<I>, I: 'static> GenesisBuild<T, I> for GenesisConfig<T, I> {
fn build(&self) {
let total = self.balances.iter().fold(Zero::zero(), |acc: T::Balance, &(_, n)| acc + n);
<TotalIssuance<T, I>>::put(total);
<StorageVersion<T, I>>::put(Releases::V2_0_0);
for (_, balance) in &self.balances {
assert!(
*balance >= <T as Config<I>>::ExistentialDeposit::get(),
"the balance of any account should always be at least the existential deposit.",
)
}
// ensure no duplicates exist.
let endowed_accounts = self
.balances
.iter()
.map(|(x, _)| x)
.cloned()
.collect::<std::collections::BTreeSet<_>>();
assert!(
endowed_accounts.len() == self.balances.len(),
"duplicate balances in genesis."
);
for &(ref who, free) in self.balances.iter() {
assert!(T::AccountStore::insert(who, AccountData { free, ..Default::default() })
.is_ok());
}
}
}
}
#[cfg(feature = "std")]
impl<T: Config<I>, I: 'static> GenesisConfig<T, I> {
/// Direct implementation of `GenesisBuild::build_storage`.
///
/// Kept in order not to break dependency.
pub fn build_storage(&self) -> Result<sp_runtime::Storage, String> {
<Self as GenesisBuild<T, I>>::build_storage(self)
}
/// Direct implementation of `GenesisBuild::assimilate_storage`.
///
/// Kept in order not to break dependency.
pub fn assimilate_storage(&self, storage: &mut sp_runtime::Storage) -> Result<(), String> {
<Self as GenesisBuild<T, I>>::assimilate_storage(self, storage)
}
}
/// Simplified reasons for withdrawing balance.
#[derive(Encode, Decode, Clone, Copy, PartialEq, Eq, RuntimeDebug, MaxEncodedLen, TypeInfo)]
pub enum Reasons {
/// Paying system transaction fees.
Fee = 0,
/// Any reason other than paying system transaction fees.
Misc = 1,
/// Any reason at all.
All = 2,
}
impl From<WithdrawReasons> for Reasons {
fn from(r: WithdrawReasons) -> Reasons {
if r == WithdrawReasons::TRANSACTION_PAYMENT {
Reasons::Fee
} else if r.contains(WithdrawReasons::TRANSACTION_PAYMENT) {
Reasons::All
} else {
Reasons::Misc
}
}
}
impl BitOr for Reasons {
type Output = Reasons;
fn bitor(self, other: Reasons) -> Reasons {
if self == other {
return self
}
Reasons::All
}
}
/// A single lock on a balance. There can be many of these on an account and they "overlap", so the
/// same balance is frozen by multiple locks.
#[derive(Encode, Decode, Clone, PartialEq, Eq, RuntimeDebug, MaxEncodedLen, TypeInfo)]
pub struct BalanceLock<Balance> {
/// An identifier for this lock. Only one lock may be in existence for each identifier.
pub id: LockIdentifier,
/// The amount which the free balance may not drop below when this lock is in effect.
pub amount: Balance,
/// If true, then the lock remains in effect even for payment of transaction fees.
pub reasons: Reasons,
}
/// Store named reserved balance.
#[derive(Encode, Decode, Clone, PartialEq, Eq, RuntimeDebug, MaxEncodedLen, TypeInfo)]
pub struct ReserveData<ReserveIdentifier, Balance> {
/// The identifier for the named reserve.
pub id: ReserveIdentifier,
/// The amount of the named reserve.
pub amount: Balance,
}
/// All balance information for an account.
#[derive(Encode, Decode, Clone, PartialEq, Eq, Default, RuntimeDebug, MaxEncodedLen, TypeInfo)]
pub struct AccountData<Balance> {
/// Non-reserved part of the balance. There may still be restrictions on this, but it is the
/// total pool what may in principle be transferred, reserved and used for tipping.
///
/// This is the only balance that matters in terms of most operations on tokens. It
/// alone is used to determine the balance when in the contract execution environment.
pub free: Balance,
/// Balance which is reserved and may not be used at all.
///
/// This can still get slashed, but gets slashed last of all.
///
/// This balance is a 'reserve' balance that other subsystems use in order to set aside tokens
/// that are still 'owned' by the account holder, but which are suspendable.
/// This includes named reserve and unnamed reserve.
pub reserved: Balance,
/// The amount that `free` may not drop below when withdrawing for *anything except transaction
/// fee payment*.
pub misc_frozen: Balance,
/// The amount that `free` may not drop below when withdrawing specifically for transaction
/// fee payment.
pub fee_frozen: Balance,
}
impl<Balance: Saturating + Copy + Ord> AccountData<Balance> {
/// How much this account's balance can be reduced for the given `reasons`.
fn usable(&self, reasons: Reasons) -> Balance {
self.free.saturating_sub(self.frozen(reasons))
}
/// The amount that this account's free balance may not be reduced beyond for the given
/// `reasons`.
fn frozen(&self, reasons: Reasons) -> Balance {
match reasons {
Reasons::All => self.misc_frozen.max(self.fee_frozen),
Reasons::Misc => self.misc_frozen,
Reasons::Fee => self.fee_frozen,
}
}
/// The total balance in this account including any that is reserved and ignoring any frozen.
fn total(&self) -> Balance {
self.free.saturating_add(self.reserved)
}
}
// A value placed in storage that represents the current version of the Balances storage.
// This value is used by the `on_runtime_upgrade` logic to determine whether we run
// storage migration logic. This should match directly with the semantic versions of the Rust crate.
#[derive(Encode, Decode, Clone, Copy, PartialEq, Eq, RuntimeDebug, MaxEncodedLen, TypeInfo)]
enum Releases {
V1_0_0,
V2_0_0,
}
impl Default for Releases {
fn default() -> Self {
Releases::V1_0_0
}
}
pub struct DustCleaner<T: Config<I>, I: 'static = ()>(
Option<(T::AccountId, NegativeImbalance<T, I>)>,
);
impl<T: Config<I>, I: 'static> Drop for DustCleaner<T, I> {
fn drop(&mut self) {
if let Some((who, dust)) = self.0.take() {
Pallet::<T, I>::deposit_event(Event::DustLost { account: who, amount: dust.peek() });
T::DustRemoval::on_unbalanced(dust);
}
}
}
impl<T: Config<I>, I: 'static> Pallet<T, I> {
/// Get the free balance of an account.
pub fn free_balance(who: impl sp_std::borrow::Borrow<T::AccountId>) -> T::Balance {
Self::account(who.borrow()).free
}
/// Get the balance of an account that can be used for transfers, reservations, or any other
/// non-locking, non-transaction-fee activity. Will be at most `free_balance`.
pub fn usable_balance(who: impl sp_std::borrow::Borrow<T::AccountId>) -> T::Balance {
Self::account(who.borrow()).usable(Reasons::Misc)
}
/// Get the balance of an account that can be used for paying transaction fees (not tipping,
/// or any other kind of fees, though). Will be at most `free_balance`.
pub fn usable_balance_for_fees(who: impl sp_std::borrow::Borrow<T::AccountId>) -> T::Balance {
Self::account(who.borrow()).usable(Reasons::Fee)
}
/// Get the reserved balance of an account.
pub fn reserved_balance(who: impl sp_std::borrow::Borrow<T::AccountId>) -> T::Balance {
Self::account(who.borrow()).reserved
}
/// Get both the free and reserved balances of an account.
fn account(who: &T::AccountId) -> AccountData<T::Balance> {
T::AccountStore::get(who)
}
/// Handles any steps needed after mutating an account.
///
/// This includes DustRemoval unbalancing, in the case than the `new` account's total balance
/// is non-zero but below ED.
///
/// Returns two values:
/// - `Some` containing the the `new` account, iff the account has sufficient balance.
/// - `Some` containing the dust to be dropped, iff some dust should be dropped.
fn post_mutation(
_who: &T::AccountId,
new: AccountData<T::Balance>,
) -> (Option<AccountData<T::Balance>>, Option<NegativeImbalance<T, I>>) {
let total = new.total();
if total < T::ExistentialDeposit::get() {
if total.is_zero() {
(None, None)
} else {
(None, Some(NegativeImbalance::new(total)))
}
} else {
(Some(new), None)
}
}
fn deposit_consequence(
_who: &T::AccountId,
amount: T::Balance,
account: &AccountData<T::Balance>,
mint: bool,
) -> DepositConsequence {
if amount.is_zero() {
return DepositConsequence::Success
}
if mint && TotalIssuance::<T, I>::get().checked_add(&amount).is_none() {
return DepositConsequence::Overflow
}
let new_total_balance = match account.total().checked_add(&amount) {
Some(x) => x,
None => return DepositConsequence::Overflow,
};
if new_total_balance < T::ExistentialDeposit::get() {
return DepositConsequence::BelowMinimum
}
// NOTE: We assume that we are a provider, so don't need to do any checks in the
// case of account creation.
DepositConsequence::Success
}
fn withdraw_consequence(
who: &T::AccountId,
amount: T::Balance,
account: &AccountData<T::Balance>,
) -> WithdrawConsequence<T::Balance> {
if amount.is_zero() {
return WithdrawConsequence::Success
}
if TotalIssuance::<T, I>::get().checked_sub(&amount).is_none() {
return WithdrawConsequence::Underflow
}
let new_total_balance = match account.total().checked_sub(&amount) {
Some(x) => x,
None => return WithdrawConsequence::NoFunds,
};
// Provider restriction - total account balance cannot be reduced to zero if it cannot
// sustain the loss of a provider reference.
// NOTE: This assumes that the pallet is a provider (which is true). Is this ever changes,
// then this will need to adapt accordingly.
let ed = T::ExistentialDeposit::get();
let success = if new_total_balance < ed {
if frame_system::Pallet::<T>::can_dec_provider(who) {
WithdrawConsequence::ReducedToZero(new_total_balance)
} else {
return WithdrawConsequence::WouldDie
}
} else {
WithdrawConsequence::Success
};
// Enough free funds to have them be reduced.
let new_free_balance = match account.free.checked_sub(&amount) {
Some(b) => b,
None => return WithdrawConsequence::NoFunds,
};
// Eventual free funds must be no less than the frozen balance.
let min_balance = account.frozen(Reasons::All);
if new_free_balance < min_balance {
return WithdrawConsequence::Frozen
}
success
}
/// Mutate an account to some new value, or delete it entirely with `None`. Will enforce
/// `ExistentialDeposit` law, annulling the account as needed.
///
/// NOTE: Doesn't do any preparatory work for creating a new account, so should only be used
/// when it is known that the account already exists.
///
/// NOTE: LOW-LEVEL: This will not attempt to maintain total issuance. It is expected that
/// the caller will do this.
pub fn mutate_account<R>(
who: &T::AccountId,
f: impl FnOnce(&mut AccountData<T::Balance>) -> R,
) -> Result<R, DispatchError> {
Self::try_mutate_account(who, |a, _| -> Result<R, DispatchError> { Ok(f(a)) })
}
/// Mutate an account to some new value, or delete it entirely with `None`. Will enforce
/// `ExistentialDeposit` law, annulling the account as needed. This will do nothing if the
/// result of `f` is an `Err`.
///
/// NOTE: Doesn't do any preparatory work for creating a new account, so should only be used
/// when it is known that the account already exists.
///
/// NOTE: LOW-LEVEL: This will not attempt to maintain total issuance. It is expected that
/// the caller will do this.
fn try_mutate_account<R, E: From<DispatchError>>(
who: &T::AccountId,
f: impl FnOnce(&mut AccountData<T::Balance>, bool) -> Result<R, E>,
) -> Result<R, E> {
Self::try_mutate_account_with_dust(who, f).map(|(result, dust_cleaner)| {
drop(dust_cleaner);
result
})
}
/// Mutate an account to some new value, or delete it entirely with `None`. Will enforce
/// `ExistentialDeposit` law, annulling the account as needed. This will do nothing if the
/// result of `f` is an `Err`.
///
/// It returns both the result from the closure, and an optional `DustCleaner` instance which
/// should be dropped once it is known that all nested mutates that could affect storage items
/// what the dust handler touches have completed.
///
/// NOTE: Doesn't do any preparatory work for creating a new account, so should only be used
/// when it is known that the account already exists.
///
/// NOTE: LOW-LEVEL: This will not attempt to maintain total issuance. It is expected that
/// the caller will do this.
fn try_mutate_account_with_dust<R, E: From<DispatchError>>(
who: &T::AccountId,
f: impl FnOnce(&mut AccountData<T::Balance>, bool) -> Result<R, E>,
) -> Result<(R, DustCleaner<T, I>), E> {
let result = T::AccountStore::try_mutate_exists(who, |maybe_account| {
let is_new = maybe_account.is_none();
let mut account = maybe_account.take().unwrap_or_default();
f(&mut account, is_new).map(move |result| {
let maybe_endowed = if is_new { Some(account.free) } else { None };
let maybe_account_maybe_dust = Self::post_mutation(who, account);
*maybe_account = maybe_account_maybe_dust.0;
(maybe_endowed, maybe_account_maybe_dust.1, result)
})
});
result.map(|(maybe_endowed, maybe_dust, result)| {
if let Some(endowed) = maybe_endowed {
Self::deposit_event(Event::Endowed { account: who.clone(), free_balance: endowed });
}
let dust_cleaner = DustCleaner(maybe_dust.map(|dust| (who.clone(), dust)));
(result, dust_cleaner)
})
}
/// Update the account entry for `who`, given the locks.
fn update_locks(who: &T::AccountId, locks: &[BalanceLock<T::Balance>]) {
let bounded_locks = WeakBoundedVec::<_, T::MaxLocks>::force_from(
locks.to_vec(),
Some("Balances Update Locks"),
);
if locks.len() as u32 > T::MaxLocks::get() {
log::warn!(
target: "runtime::balances",
"Warning: A user has more currency locks than expected. \
A runtime configuration adjustment may be needed."
);
}
// No way this can fail since we do not alter the existential balances.
let res = Self::mutate_account(who, |b| {
b.misc_frozen = Zero::zero();
b.fee_frozen = Zero::zero();
for l in locks.iter() {
if l.reasons == Reasons::All || l.reasons == Reasons::Misc {
b.misc_frozen = b.misc_frozen.max(l.amount);
}
if l.reasons == Reasons::All || l.reasons == Reasons::Fee {
b.fee_frozen = b.fee_frozen.max(l.amount);
}
}
});
debug_assert!(res.is_ok());
let existed = Locks::<T, I>::contains_key(who);
if locks.is_empty() {
Locks::<T, I>::remove(who);
if existed {
// TODO: use Locks::<T, I>::hashed_key
// https://github.com/paritytech/substrate/issues/4969
system::Pallet::<T>::dec_consumers(who);
}
} else {
Locks::<T, I>::insert(who, bounded_locks);
if !existed && system::Pallet::<T>::inc_consumers_without_limit(who).is_err() {
// No providers for the locks. This is impossible under normal circumstances
// since the funds that are under the lock will themselves be stored in the
// account and therefore will need a reference.
log::warn!(
target: "runtime::balances",
"Warning: Attempt to introduce lock consumer reference, yet no providers. \
This is unexpected but should be safe."
);
}
}
}
/// Move the reserved balance of one account into the balance of another, according to `status`.
///
/// Is a no-op if:
/// - the value to be moved is zero; or
/// - the `slashed` id equal to `beneficiary` and the `status` is `Reserved`.
fn do_transfer_reserved(
slashed: &T::AccountId,
beneficiary: &T::AccountId,
value: T::Balance,
best_effort: bool,
status: Status,
) -> Result<T::Balance, DispatchError> {
if value.is_zero() {
return Ok(Zero::zero())
}
if slashed == beneficiary {
return match status {
Status::Free => Ok(Self::unreserve(slashed, value)),
Status::Reserved => Ok(value.saturating_sub(Self::reserved_balance(slashed))),
}
}
let ((actual, _maybe_one_dust), _maybe_other_dust) = Self::try_mutate_account_with_dust(
beneficiary,
|to_account, is_new| -> Result<(T::Balance, DustCleaner<T, I>), DispatchError> {
ensure!(!is_new, Error::<T, I>::DeadAccount);
Self::try_mutate_account_with_dust(
slashed,
|from_account, _| -> Result<T::Balance, DispatchError> {
let actual = cmp::min(from_account.reserved, value);
ensure!(best_effort || actual == value, Error::<T, I>::InsufficientBalance);
match status {
Status::Free =>
to_account.free = to_account
.free
.checked_add(&actual)
.ok_or(ArithmeticError::Overflow)?,
Status::Reserved =>
to_account.reserved = to_account
.reserved
.checked_add(&actual)
.ok_or(ArithmeticError::Overflow)?,
}
from_account.reserved -= actual;
Ok(actual)
},
)
},
)?;
Self::deposit_event(Event::ReserveRepatriated {
from: slashed.clone(),
to: beneficiary.clone(),
amount: actual,
destination_status: status,
});
Ok(actual)
}
}
impl<T: Config<I>, I: 'static> fungible::Inspect<T::AccountId> for Pallet<T, I> {
type Balance = T::Balance;
fn total_issuance() -> Self::Balance {
TotalIssuance::<T, I>::get()
}
fn minimum_balance() -> Self::Balance {
T::ExistentialDeposit::get()
}
fn balance(who: &T::AccountId) -> Self::Balance {
Self::account(who).total()
}
fn reducible_balance(who: &T::AccountId, keep_alive: bool) -> Self::Balance {
let a = Self::account(who);
// Liquid balance is what is neither reserved nor locked/frozen.
let liquid = a.free.saturating_sub(a.fee_frozen.max(a.misc_frozen));
if frame_system::Pallet::<T>::can_dec_provider(who) && !keep_alive {
liquid
} else {
// `must_remain_to_exist` is the part of liquid balance which must remain to keep total
// over ED.
let must_remain_to_exist =
T::ExistentialDeposit::get().saturating_sub(a.total() - liquid);
liquid.saturating_sub(must_remain_to_exist)
}
}
fn can_deposit(who: &T::AccountId, amount: Self::Balance, mint: bool) -> DepositConsequence {
Self::deposit_consequence(who, amount, &Self::account(who), mint)
}
fn can_withdraw(
who: &T::AccountId,
amount: Self::Balance,
) -> WithdrawConsequence<Self::Balance> {
Self::withdraw_consequence(who, amount, &Self::account(who))
}
}
impl<T: Config<I>, I: 'static> fungible::Mutate<T::AccountId> for Pallet<T, I> {
fn mint_into(who: &T::AccountId, amount: Self::Balance) -> DispatchResult {
if amount.is_zero() {
return Ok(())
}
Self::try_mutate_account(who, |account, _is_new| -> DispatchResult {
Self::deposit_consequence(who, amount, account, true).into_result()?;
account.free += amount;
Ok(())
})?;
TotalIssuance::<T, I>::mutate(|t| *t += amount);
Self::deposit_event(Event::Deposit { who: who.clone(), amount });
Ok(())
}
fn burn_from(
who: &T::AccountId,
amount: Self::Balance,
) -> Result<Self::Balance, DispatchError> {
if amount.is_zero() {
return Ok(Self::Balance::zero())
}
let actual = Self::try_mutate_account(
who,
|account, _is_new| -> Result<T::Balance, DispatchError> {
let extra = Self::withdraw_consequence(who, amount, account).into_result()?;
let actual = amount + extra;
account.free -= actual;
Ok(actual)
},
)?;
TotalIssuance::<T, I>::mutate(|t| *t -= actual);
Self::deposit_event(Event::Withdraw { who: who.clone(), amount });
Ok(actual)
}
}
impl<T: Config<I>, I: 'static> fungible::Transfer<T::AccountId> for Pallet<T, I> {
fn transfer(
source: &T::AccountId,
dest: &T::AccountId,
amount: T::Balance,
keep_alive: bool,
) -> Result<T::Balance, DispatchError> {
let er = if keep_alive { KeepAlive } else { AllowDeath };
<Self as Currency<T::AccountId>>::transfer(source, dest, amount, er).map(|_| amount)
}
}
impl<T: Config<I>, I: 'static> fungible::Unbalanced<T::AccountId> for Pallet<T, I> {
fn set_balance(who: &T::AccountId, amount: Self::Balance) -> DispatchResult {
Self::mutate_account(who, |account| {
account.free = amount;
Self::deposit_event(Event::BalanceSet {
who: who.clone(),
free: account.free,
reserved: account.reserved,
});
})?;
Ok(())
}
fn set_total_issuance(amount: Self::Balance) {
TotalIssuance::<T, I>::mutate(|t| *t = amount);
}
}
impl<T: Config<I>, I: 'static> fungible::InspectHold<T::AccountId> for Pallet<T, I> {
fn balance_on_hold(who: &T::AccountId) -> T::Balance {
Self::account(who).reserved
}
fn can_hold(who: &T::AccountId, amount: T::Balance) -> bool {
let a = Self::account(who);
let min_balance = T::ExistentialDeposit::get().max(a.frozen(Reasons::All));
if a.reserved.checked_add(&amount).is_none() {
return false
}
// We require it to be min_balance + amount to ensure that the full reserved funds may be
// slashed without compromising locked funds or destroying the account.
let required_free = match min_balance.checked_add(&amount) {
Some(x) => x,
None => return false,
};
a.free >= required_free
}
}
impl<T: Config<I>, I: 'static> fungible::MutateHold<T::AccountId> for Pallet<T, I> {
fn hold(who: &T::AccountId, amount: Self::Balance) -> DispatchResult {
if amount.is_zero() {
return Ok(())
}
ensure!(Self::can_reserve(who, amount), Error::<T, I>::InsufficientBalance);
Self::mutate_account(who, |a| {
a.free -= amount;
a.reserved += amount;
})?;
Ok(())
}
fn release(
who: &T::AccountId,
amount: Self::Balance,
best_effort: bool,
) -> Result<T::Balance, DispatchError> {
if amount.is_zero() {
return Ok(amount)
}
// Done on a best-effort basis.
Self::try_mutate_account(who, |a, _| {
let new_free = a.free.saturating_add(amount.min(a.reserved));
let actual = new_free - a.free;
ensure!(best_effort || actual == amount, Error::<T, I>::InsufficientBalance);
// ^^^ Guaranteed to be <= amount and <= a.reserved
a.free = new_free;
a.reserved = a.reserved.saturating_sub(actual);
Ok(actual)
})
}
fn transfer_held(
source: &T::AccountId,
dest: &T::AccountId,
amount: Self::Balance,
best_effort: bool,
on_hold: bool,
) -> Result<Self::Balance, DispatchError> {
let status = if on_hold { Status::Reserved } else { Status::Free };
Self::do_transfer_reserved(source, dest, amount, best_effort, status)
}
}
// wrapping these imbalances in a private module is necessary to ensure absolute privacy
// of the inner member.
mod imbalances {
use super::{result, Config, Imbalance, RuntimeDebug, Saturating, TryDrop, Zero};
use frame_support::traits::SameOrOther;
use sp_std::mem;
/// Opaque, move-only struct with private fields that serves as a token denoting that
/// funds have been created without any equal and opposite accounting.
#[must_use]
#[derive(RuntimeDebug, PartialEq, Eq)]
pub struct PositiveImbalance<T: Config<I>, I: 'static = ()>(T::Balance);
impl<T: Config<I>, I: 'static> PositiveImbalance<T, I> {
/// Create a new positive imbalance from a balance.
pub fn new(amount: T::Balance) -> Self {
PositiveImbalance(amount)
}
}
/// Opaque, move-only struct with private fields that serves as a token denoting that
/// funds have been destroyed without any equal and opposite accounting.
#[must_use]
#[derive(RuntimeDebug, PartialEq, Eq)]
pub struct NegativeImbalance<T: Config<I>, I: 'static = ()>(T::Balance);
impl<T: Config<I>, I: 'static> NegativeImbalance<T, I> {
/// Create a new negative imbalance from a balance.
pub fn new(amount: T::Balance) -> Self {
NegativeImbalance(amount)
}
}
impl<T: Config<I>, I: 'static> TryDrop for PositiveImbalance<T, I> {
fn try_drop(self) -> result::Result<(), Self> {
self.drop_zero()
}
}
impl<T: Config<I>, I: 'static> Default for PositiveImbalance<T, I> {
fn default() -> Self {
Self::zero()
}
}
impl<T: Config<I>, I: 'static> Imbalance<T::Balance> for PositiveImbalance<T, I> {
type Opposite = NegativeImbalance<T, I>;
fn zero() -> Self {
Self(Zero::zero())
}
fn drop_zero(self) -> result::Result<(), Self> {
if self.0.is_zero() {
Ok(())
} else {
Err(self)
}
}
fn split(self, amount: T::Balance) -> (Self, Self) {
let first = self.0.min(amount);
let second = self.0 - first;
mem::forget(self);
(Self(first), Self(second))
}
fn merge(mut self, other: Self) -> Self {
self.0 = self.0.saturating_add(other.0);
mem::forget(other);
self
}
fn subsume(&mut self, other: Self) {
self.0 = self.0.saturating_add(other.0);
mem::forget(other);
}
fn offset(self, other: Self::Opposite) -> SameOrOther<Self, Self::Opposite> {
let (a, b) = (self.0, other.0);
mem::forget((self, other));
if a > b {
SameOrOther::Same(Self(a - b))
} else if b > a {
SameOrOther::Other(NegativeImbalance::new(b - a))
} else {
SameOrOther::None
}
}
fn peek(&self) -> T::Balance {
self.0
}
}
impl<T: Config<I>, I: 'static> TryDrop for NegativeImbalance<T, I> {
fn try_drop(self) -> result::Result<(), Self> {
self.drop_zero()
}
}
impl<T: Config<I>, I: 'static> Default for NegativeImbalance<T, I> {
fn default() -> Self {
Self::zero()
}
}
impl<T: Config<I>, I: 'static> Imbalance<T::Balance> for NegativeImbalance<T, I> {
type Opposite = PositiveImbalance<T, I>;
fn zero() -> Self {
Self(Zero::zero())
}
fn drop_zero(self) -> result::Result<(), Self> {
if self.0.is_zero() {
Ok(())
} else {
Err(self)
}
}
fn split(self, amount: T::Balance) -> (Self, Self) {
let first = self.0.min(amount);
let second = self.0 - first;
mem::forget(self);
(Self(first), Self(second))
}
fn merge(mut self, other: Self) -> Self {
self.0 = self.0.saturating_add(other.0);
mem::forget(other);
self
}
fn subsume(&mut self, other: Self) {
self.0 = self.0.saturating_add(other.0);
mem::forget(other);
}
fn offset(self, other: Self::Opposite) -> SameOrOther<Self, Self::Opposite> {
let (a, b) = (self.0, other.0);
mem::forget((self, other));
if a > b {
SameOrOther::Same(Self(a - b))
} else if b > a {
SameOrOther::Other(PositiveImbalance::new(b - a))
} else {
SameOrOther::None
}
}
fn peek(&self) -> T::Balance {
self.0
}
}
impl<T: Config<I>, I: 'static> Drop for PositiveImbalance<T, I> {
/// Basic drop handler will just square up the total issuance.
fn drop(&mut self) {
<super::TotalIssuance<T, I>>::mutate(|v| *v = v.saturating_add(self.0));
}
}
impl<T: Config<I>, I: 'static> Drop for NegativeImbalance<T, I> {
/// Basic drop handler will just square up the total issuance.
fn drop(&mut self) {
<super::TotalIssuance<T, I>>::mutate(|v| *v = v.saturating_sub(self.0));
}
}
}
impl<T: Config<I>, I: 'static> Currency<T::AccountId> for Pallet<T, I>
where
T::Balance: MaybeSerializeDeserialize + Debug,
{
type Balance = T::Balance;
type PositiveImbalance = PositiveImbalance<T, I>;
type NegativeImbalance = NegativeImbalance<T, I>;
fn total_balance(who: &T::AccountId) -> Self::Balance {
Self::account(who).total()
}
// Check if `value` amount of free balance can be slashed from `who`.
fn can_slash(who: &T::AccountId, value: Self::Balance) -> bool {
if value.is_zero() {
return true
}
Self::free_balance(who) >= value
}
fn total_issuance() -> Self::Balance {
<TotalIssuance<T, I>>::get()
}
fn minimum_balance() -> Self::Balance {
T::ExistentialDeposit::get()
}
// Burn funds from the total issuance, returning a positive imbalance for the amount burned.
// Is a no-op if amount to be burned is zero.
fn burn(mut amount: Self::Balance) -> Self::PositiveImbalance {
if amount.is_zero() {
return PositiveImbalance::zero()
}
<TotalIssuance<T, I>>::mutate(|issued| {
*issued = issued.checked_sub(&amount).unwrap_or_else(|| {
amount = *issued;
Zero::zero()
});
});
PositiveImbalance::new(amount)
}
// Create new funds into the total issuance, returning a negative imbalance
// for the amount issued.
// Is a no-op if amount to be issued it zero.
fn issue(mut amount: Self::Balance) -> Self::NegativeImbalance {
if amount.is_zero() {
return NegativeImbalance::zero()
}
<TotalIssuance<T, I>>::mutate(|issued| {
*issued = issued.checked_add(&amount).unwrap_or_else(|| {
amount = Self::Balance::max_value() - *issued;
Self::Balance::max_value()
})
});
NegativeImbalance::new(amount)
}
fn free_balance(who: &T::AccountId) -> Self::Balance {
Self::account(who).free
}
// Ensure that an account can withdraw from their free balance given any existing withdrawal
// restrictions like locks and vesting balance.
// Is a no-op if amount to be withdrawn is zero.
//
// # <weight>
// Despite iterating over a list of locks, they are limited by the number of
// lock IDs, which means the number of runtime pallets that intend to use and create locks.
// # </weight>
fn ensure_can_withdraw(
who: &T::AccountId,
amount: T::Balance,
reasons: WithdrawReasons,
new_balance: T::Balance,
) -> DispatchResult {
if amount.is_zero() {
return Ok(())
}
let min_balance = Self::account(who).frozen(reasons.into());
ensure!(new_balance >= min_balance, Error::<T, I>::LiquidityRestrictions);
Ok(())
}
// Transfer some free balance from `transactor` to `dest`, respecting existence requirements.
// Is a no-op if value to be transferred is zero or the `transactor` is the same as `dest`.
fn transfer(
transactor: &T::AccountId,
dest: &T::AccountId,
value: Self::Balance,
existence_requirement: ExistenceRequirement,
) -> DispatchResult {
if value.is_zero() || transactor == dest {
return Ok(())
}
Self::try_mutate_account_with_dust(
dest,
|to_account, _| -> Result<DustCleaner<T, I>, DispatchError> {
Self::try_mutate_account_with_dust(
transactor,
|from_account, _| -> DispatchResult {
from_account.free = from_account
.free
.checked_sub(&value)
.ok_or(Error::<T, I>::InsufficientBalance)?;
// NOTE: total stake being stored in the same type means that this could
// never overflow but better to be safe than sorry.
to_account.free =
to_account.free.checked_add(&value).ok_or(ArithmeticError::Overflow)?;
let ed = T::ExistentialDeposit::get();
ensure!(to_account.total() >= ed, Error::<T, I>::ExistentialDeposit);
Self::ensure_can_withdraw(
transactor,
value,
WithdrawReasons::TRANSFER,
from_account.free,
)
.map_err(|_| Error::<T, I>::LiquidityRestrictions)?;
// TODO: This is over-conservative. There may now be other providers, and
// this pallet may not even be a provider.
let allow_death = existence_requirement == ExistenceRequirement::AllowDeath;
let allow_death =
allow_death && system::Pallet::<T>::can_dec_provider(transactor);
ensure!(
allow_death || from_account.total() >= ed,
Error::<T, I>::KeepAlive
);
Ok(())
},
)
.map(|(_, maybe_dust_cleaner)| maybe_dust_cleaner)
},
)?;
// Emit transfer event.
Self::deposit_event(Event::Transfer {
from: transactor.clone(),
to: dest.clone(),
amount: value,
});
Ok(())
}
/// Slash a target account `who`, returning the negative imbalance created and any left over
/// amount that could not be slashed.
///
/// Is a no-op if `value` to be slashed is zero or the account does not exist.
///
/// NOTE: `slash()` prefers free balance, but assumes that reserve balance can be drawn
/// from in extreme circumstances. `can_slash()` should be used prior to `slash()` to avoid
/// having to draw from reserved funds, however we err on the side of punishment if things are
/// inconsistent or `can_slash` wasn't used appropriately.
fn slash(who: &T::AccountId, value: Self::Balance) -> (Self::NegativeImbalance, Self::Balance) {
if value.is_zero() {
return (NegativeImbalance::zero(), Zero::zero())
}
if Self::total_balance(who).is_zero() {
return (NegativeImbalance::zero(), value)
}
for attempt in 0..2 {
match Self::try_mutate_account(
who,
|account,
_is_new|
-> Result<(Self::NegativeImbalance, Self::Balance), DispatchError> {
// Best value is the most amount we can slash following liveness rules.
let best_value = match attempt {
// First attempt we try to slash the full amount, and see if liveness issues
// happen.
0 => value,
// If acting as a critical provider (i.e. first attempt failed), then slash
// as much as possible while leaving at least at ED.
_ => value.min(
(account.free + account.reserved)
.saturating_sub(T::ExistentialDeposit::get()),
),
};
let free_slash = cmp::min(account.free, best_value);
account.free -= free_slash; // Safe because of above check
let remaining_slash = best_value - free_slash; // Safe because of above check
if !remaining_slash.is_zero() {
// If we have remaining slash, take it from reserved balance.
let reserved_slash = cmp::min(account.reserved, remaining_slash);
account.reserved -= reserved_slash; // Safe because of above check
Ok((
NegativeImbalance::new(free_slash + reserved_slash),
value - free_slash - reserved_slash, /* Safe because value is gt or
* eq total slashed */
))
} else {
// Else we are done!
Ok((
NegativeImbalance::new(free_slash),
value - free_slash, // Safe because value is gt or eq to total slashed
))
}
},
) {
Ok((imbalance, not_slashed)) => {
Self::deposit_event(Event::Slashed {
who: who.clone(),
amount: value.saturating_sub(not_slashed),
});
return (imbalance, not_slashed)
},
Err(_) => (),
}
}
// Should never get here. But we'll be defensive anyway.
(Self::NegativeImbalance::zero(), value)
}
/// Deposit some `value` into the free balance of an existing target account `who`.
///
/// Is a no-op if the `value` to be deposited is zero.
fn deposit_into_existing(
who: &T::AccountId,
value: Self::Balance,
) -> Result<Self::PositiveImbalance, DispatchError> {
if value.is_zero() {
return Ok(PositiveImbalance::zero())
}
Self::try_mutate_account(
who,
|account, is_new| -> Result<Self::PositiveImbalance, DispatchError> {
ensure!(!is_new, Error::<T, I>::DeadAccount);
account.free = account.free.checked_add(&value).ok_or(ArithmeticError::Overflow)?;
Self::deposit_event(Event::Deposit { who: who.clone(), amount: value });
Ok(PositiveImbalance::new(value))
},
)
}
/// Deposit some `value` into the free balance of `who`, possibly creating a new account.
///
/// This function is a no-op if:
/// - the `value` to be deposited is zero; or
/// - the `value` to be deposited is less than the required ED and the account does not yet
/// exist; or
/// - the deposit would necessitate the account to exist and there are no provider references;
/// or
/// - `value` is so large it would cause the balance of `who` to overflow.
fn deposit_creating(who: &T::AccountId, value: Self::Balance) -> Self::PositiveImbalance {
if value.is_zero() {
return Self::PositiveImbalance::zero()
}
Self::try_mutate_account(
who,
|account, is_new| -> Result<Self::PositiveImbalance, DispatchError> {
let ed = T::ExistentialDeposit::get();
ensure!(value >= ed || !is_new, Error::<T, I>::ExistentialDeposit);
// defensive only: overflow should never happen, however in case it does, then this
// operation is a no-op.
account.free = match account.free.checked_add(&value) {
Some(x) => x,
None => return Ok(Self::PositiveImbalance::zero()),
};
Self::deposit_event(Event::Deposit { who: who.clone(), amount: value });
Ok(PositiveImbalance::new(value))
},
)
.unwrap_or_else(|_| Self::PositiveImbalance::zero())
}
/// Withdraw some free balance from an account, respecting existence requirements.
///
/// Is a no-op if value to be withdrawn is zero.
fn withdraw(
who: &T::AccountId,
value: Self::Balance,
reasons: WithdrawReasons,
liveness: ExistenceRequirement,
) -> result::Result<Self::NegativeImbalance, DispatchError> {
if value.is_zero() {
return Ok(NegativeImbalance::zero())
}
Self::try_mutate_account(
who,
|account, _| -> Result<Self::NegativeImbalance, DispatchError> {
let new_free_account =
account.free.checked_sub(&value).ok_or(Error::<T, I>::InsufficientBalance)?;
// bail if we need to keep the account alive and this would kill it.
let ed = T::ExistentialDeposit::get();
let would_be_dead = new_free_account + account.reserved < ed;
let would_kill = would_be_dead && account.free + account.reserved >= ed;
ensure!(liveness == AllowDeath || !would_kill, Error::<T, I>::KeepAlive);
Self::ensure_can_withdraw(who, value, reasons, new_free_account)?;
account.free = new_free_account;
Self::deposit_event(Event::Withdraw { who: who.clone(), amount: value });
Ok(NegativeImbalance::new(value))
},
)
}
/// Force the new free balance of a target account `who` to some new value `balance`.
fn make_free_balance_be(
who: &T::AccountId,
value: Self::Balance,
) -> SignedImbalance<Self::Balance, Self::PositiveImbalance> {
Self::try_mutate_account(
who,
|account,
is_new|
-> Result<SignedImbalance<Self::Balance, Self::PositiveImbalance>, DispatchError> {
let ed = T::ExistentialDeposit::get();
let total = value.saturating_add(account.reserved);
// If we're attempting to set an existing account to less than ED, then
// bypass the entire operation. It's a no-op if you follow it through, but
// since this is an instance where we might account for a negative imbalance
// (in the dust cleaner of set_account) before we account for its actual
// equal and opposite cause (returned as an Imbalance), then in the
// instance that there's no other accounts on the system at all, we might
// underflow the issuance and our arithmetic will be off.
ensure!(total >= ed || !is_new, Error::<T, I>::ExistentialDeposit);
let imbalance = if account.free <= value {
SignedImbalance::Positive(PositiveImbalance::new(value - account.free))
} else {
SignedImbalance::Negative(NegativeImbalance::new(account.free - value))
};
account.free = value;
Self::deposit_event(Event::BalanceSet {
who: who.clone(),
free: account.free,
reserved: account.reserved,
});
Ok(imbalance)
},
)
.unwrap_or_else(|_| SignedImbalance::Positive(Self::PositiveImbalance::zero()))
}
}
impl<T: Config<I>, I: 'static> ReservableCurrency<T::AccountId> for Pallet<T, I>
where
T::Balance: MaybeSerializeDeserialize + Debug,
{
/// Check if `who` can reserve `value` from their free balance.
///
/// Always `true` if value to be reserved is zero.
fn can_reserve(who: &T::AccountId, value: Self::Balance) -> bool {
if value.is_zero() {
return true
}
Self::account(who).free.checked_sub(&value).map_or(false, |new_balance| {
Self::ensure_can_withdraw(who, value, WithdrawReasons::RESERVE, new_balance).is_ok()
})
}
fn reserved_balance(who: &T::AccountId) -> Self::Balance {
Self::account(who).reserved
}
/// Move `value` from the free balance from `who` to their reserved balance.
///
/// Is a no-op if value to be reserved is zero.
fn reserve(who: &T::AccountId, value: Self::Balance) -> DispatchResult {
if value.is_zero() {
return Ok(())
}
Self::try_mutate_account(who, |account, _| -> DispatchResult {
account.free =
account.free.checked_sub(&value).ok_or(Error::<T, I>::InsufficientBalance)?;
account.reserved =
account.reserved.checked_add(&value).ok_or(ArithmeticError::Overflow)?;
Self::ensure_can_withdraw(&who, value, WithdrawReasons::RESERVE, account.free)
})?;
Self::deposit_event(Event::Reserved { who: who.clone(), amount: value });
Ok(())
}
/// Unreserve some funds, returning any amount that was unable to be unreserved.
///
/// Is a no-op if the value to be unreserved is zero or the account does not exist.
fn unreserve(who: &T::AccountId, value: Self::Balance) -> Self::Balance {
if value.is_zero() {
return Zero::zero()
}
if Self::total_balance(who).is_zero() {
return value
}
let actual = match Self::mutate_account(who, |account| {
let actual = cmp::min(account.reserved, value);
account.reserved -= actual;
// defensive only: this can never fail since total issuance which is at least
// free+reserved fits into the same data type.
account.free = account.free.defensive_saturating_add(actual);
actual
}) {
Ok(x) => x,
Err(_) => {
// This should never happen since we don't alter the total amount in the account.
// If it ever does, then we should fail gracefully though, indicating that nothing
// could be done.
return value
},
};
Self::deposit_event(Event::Unreserved { who: who.clone(), amount: actual });
value - actual
}
/// Slash from reserved balance, returning the negative imbalance created,
/// and any amount that was unable to be slashed.
///
/// Is a no-op if the value to be slashed is zero or the account does not exist.
fn slash_reserved(
who: &T::AccountId,
value: Self::Balance,
) -> (Self::NegativeImbalance, Self::Balance) {
if value.is_zero() {
return (NegativeImbalance::zero(), Zero::zero())
}
if Self::total_balance(who).is_zero() {
return (NegativeImbalance::zero(), value)
}
// NOTE: `mutate_account` may fail if it attempts to reduce the balance to the point that an
// account is attempted to be illegally destroyed.
for attempt in 0..2 {
match Self::mutate_account(who, |account| {
let best_value = match attempt {
0 => value,
// If acting as a critical provider (i.e. first attempt failed), then ensure
// slash leaves at least the ED.
_ => value.min(
(account.free + account.reserved)
.saturating_sub(T::ExistentialDeposit::get()),
),
};
let actual = cmp::min(account.reserved, best_value);
account.reserved -= actual;
// underflow should never happen, but it if does, there's nothing to be done here.
(NegativeImbalance::new(actual), value - actual)
}) {
Ok((imbalance, not_slashed)) => {
Self::deposit_event(Event::Slashed {
who: who.clone(),
amount: value.saturating_sub(not_slashed),
});
return (imbalance, not_slashed)
},
Err(_) => (),
}
}
// Should never get here as we ensure that ED is left in the second attempt.
// In case we do, though, then we fail gracefully.
(Self::NegativeImbalance::zero(), value)
}
/// Move the reserved balance of one account into the balance of another, according to `status`.
///
/// Is a no-op if:
/// - the value to be moved is zero; or
/// - the `slashed` id equal to `beneficiary` and the `status` is `Reserved`.
fn repatriate_reserved(
slashed: &T::AccountId,
beneficiary: &T::AccountId,
value: Self::Balance,
status: Status,
) -> Result<Self::Balance, DispatchError> {
let actual = Self::do_transfer_reserved(slashed, beneficiary, value, true, status)?;
Ok(value.saturating_sub(actual))
}
}
impl<T: Config<I>, I: 'static> NamedReservableCurrency<T::AccountId> for Pallet<T, I>
where
T::Balance: MaybeSerializeDeserialize + Debug,
{
type ReserveIdentifier = T::ReserveIdentifier;
fn reserved_balance_named(id: &Self::ReserveIdentifier, who: &T::AccountId) -> Self::Balance {
let reserves = Self::reserves(who);
reserves
.binary_search_by_key(id, |data| data.id)
.map(|index| reserves[index].amount)
.unwrap_or_default()
}
/// Move `value` from the free balance from `who` to a named reserve balance.
///
/// Is a no-op if value to be reserved is zero.
fn reserve_named(
id: &Self::ReserveIdentifier,
who: &T::AccountId,
value: Self::Balance,
) -> DispatchResult {
if value.is_zero() {
return Ok(())
}
Reserves::<T, I>::try_mutate(who, |reserves| -> DispatchResult {
match reserves.binary_search_by_key(id, |data| data.id) {
Ok(index) => {
// this add can't overflow but just to be defensive.
reserves[index].amount = reserves[index].amount.defensive_saturating_add(value);
},
Err(index) => {
reserves
.try_insert(index, ReserveData { id: *id, amount: value })
.map_err(|_| Error::<T, I>::TooManyReserves)?;
},
};
<Self as ReservableCurrency<_>>::reserve(who, value)?;
Ok(())
})
}
/// Unreserve some funds, returning any amount that was unable to be unreserved.
///
/// Is a no-op if the value to be unreserved is zero.
fn unreserve_named(
id: &Self::ReserveIdentifier,
who: &T::AccountId,
value: Self::Balance,
) -> Self::Balance {
if value.is_zero() {
return Zero::zero()
}
Reserves::<T, I>::mutate_exists(who, |maybe_reserves| -> Self::Balance {
if let Some(reserves) = maybe_reserves.as_mut() {
match reserves.binary_search_by_key(id, |data| data.id) {
Ok(index) => {
let to_change = cmp::min(reserves[index].amount, value);
let remain = <Self as ReservableCurrency<_>>::unreserve(who, to_change);
// remain should always be zero but just to be defensive here.
let actual = to_change.defensive_saturating_sub(remain);
// `actual <= to_change` and `to_change <= amount`; qed;
reserves[index].amount -= actual;
if reserves[index].amount.is_zero() {
if reserves.len() == 1 {
// no more named reserves
*maybe_reserves = None;
} else {
// remove this named reserve
reserves.remove(index);
}
}
value - actual
},
Err(_) => value,
}
} else {
value
}
})
}
/// Slash from reserved balance, returning the negative imbalance created,
/// and any amount that was unable to be slashed.
///
/// Is a no-op if the value to be slashed is zero.
fn slash_reserved_named(
id: &Self::ReserveIdentifier,
who: &T::AccountId,
value: Self::Balance,
) -> (Self::NegativeImbalance, Self::Balance) {
if value.is_zero() {
return (NegativeImbalance::zero(), Zero::zero())
}
Reserves::<T, I>::mutate(who, |reserves| -> (Self::NegativeImbalance, Self::Balance) {
match reserves.binary_search_by_key(id, |data| data.id) {
Ok(index) => {
let to_change = cmp::min(reserves[index].amount, value);
let (imb, remain) =
<Self as ReservableCurrency<_>>::slash_reserved(who, to_change);
// remain should always be zero but just to be defensive here.
let actual = to_change.defensive_saturating_sub(remain);
// `actual <= to_change` and `to_change <= amount`; qed;
reserves[index].amount -= actual;
Self::deposit_event(Event::Slashed { who: who.clone(), amount: actual });
(imb, value - actual)
},
Err(_) => (NegativeImbalance::zero(), value),
}
})
}
/// Move the reserved balance of one account into the balance of another, according to `status`.
/// If `status` is `Reserved`, the balance will be reserved with given `id`.
///
/// Is a no-op if:
/// - the value to be moved is zero; or
/// - the `slashed` id equal to `beneficiary` and the `status` is `Reserved`.
fn repatriate_reserved_named(
id: &Self::ReserveIdentifier,
slashed: &T::AccountId,
beneficiary: &T::AccountId,
value: Self::Balance,
status: Status,
) -> Result<Self::Balance, DispatchError> {
if value.is_zero() {
return Ok(Zero::zero())
}
if slashed == beneficiary {
return match status {
Status::Free => Ok(Self::unreserve_named(id, slashed, value)),
Status::Reserved =>
Ok(value.saturating_sub(Self::reserved_balance_named(id, slashed))),
}
}
Reserves::<T, I>::try_mutate(slashed, |reserves| -> Result<Self::Balance, DispatchError> {
match reserves.binary_search_by_key(id, |data| data.id) {
Ok(index) => {
let to_change = cmp::min(reserves[index].amount, value);
let actual = if status == Status::Reserved {
// make it the reserved under same identifier
Reserves::<T, I>::try_mutate(
beneficiary,
|reserves| -> Result<T::Balance, DispatchError> {
match reserves.binary_search_by_key(id, |data| data.id) {
Ok(index) => {
let remain =
<Self as ReservableCurrency<_>>::repatriate_reserved(
slashed,
beneficiary,
to_change,
status,
)?;
// remain should always be zero but just to be defensive
// here.
let actual = to_change.defensive_saturating_sub(remain);
// this add can't overflow but just to be defensive.
reserves[index].amount =
reserves[index].amount.defensive_saturating_add(actual);
Ok(actual)
},
Err(index) => {
let remain =
<Self as ReservableCurrency<_>>::repatriate_reserved(
slashed,
beneficiary,
to_change,
status,
)?;
// remain should always be zero but just to be defensive
// here
let actual = to_change.defensive_saturating_sub(remain);
reserves
.try_insert(
index,
ReserveData { id: *id, amount: actual },
)
.map_err(|_| Error::<T, I>::TooManyReserves)?;
Ok(actual)
},
}
},
)?
} else {
let remain = <Self as ReservableCurrency<_>>::repatriate_reserved(
slashed,
beneficiary,
to_change,
status,
)?;
// remain should always be zero but just to be defensive here
to_change.defensive_saturating_sub(remain)
};
// `actual <= to_change` and `to_change <= amount`; qed;
reserves[index].amount -= actual;
Ok(value - actual)
},
Err(_) => Ok(value),
}
})
}
}
impl<T: Config<I>, I: 'static> LockableCurrency<T::AccountId> for Pallet<T, I>
where
T::Balance: MaybeSerializeDeserialize + Debug,
{
type Moment = T::BlockNumber;
type MaxLocks = T::MaxLocks;
// Set a lock on the balance of `who`.
// Is a no-op if lock amount is zero or `reasons` `is_none()`.
fn set_lock(
id: LockIdentifier,
who: &T::AccountId,
amount: T::Balance,
reasons: WithdrawReasons,
) {
if amount.is_zero() || reasons.is_empty() {
return
}
let mut new_lock = Some(BalanceLock { id, amount, reasons: reasons.into() });
let mut locks = Self::locks(who)
.into_iter()
.filter_map(|l| if l.id == id { new_lock.take() } else { Some(l) })
.collect::<Vec<_>>();
if let Some(lock) = new_lock {
locks.push(lock)
}
Self::update_locks(who, &locks[..]);
}
// Extend a lock on the balance of `who`.
// Is a no-op if lock amount is zero or `reasons` `is_none()`.
fn extend_lock(
id: LockIdentifier,
who: &T::AccountId,
amount: T::Balance,
reasons: WithdrawReasons,
) {
if amount.is_zero() || reasons.is_empty() {
return
}
let mut new_lock = Some(BalanceLock { id, amount, reasons: reasons.into() });
let mut locks = Self::locks(who)
.into_iter()
.filter_map(|l| {
if l.id == id {
new_lock.take().map(|nl| BalanceLock {
id: l.id,
amount: l.amount.max(nl.amount),
reasons: l.reasons | nl.reasons,
})
} else {
Some(l)
}
})
.collect::<Vec<_>>();
if let Some(lock) = new_lock {
locks.push(lock)
}
Self::update_locks(who, &locks[..]);
}
fn remove_lock(id: LockIdentifier, who: &T::AccountId) {
let mut locks = Self::locks(who);
locks.retain(|l| l.id != id);
Self::update_locks(who, &locks[..]);
}
}