Semi Algebra & Algebra;

DongYoung Kim·2024년 5월 29일

Measure Theory

목록 보기
1/1

Introduction;

온도계는 어떻게 온도를 측정할까? 측정을 한다는 것은 매우 실질적이지만, 깊게 생각하면 할수록 추상적인 개념이 등장한다. 이번 시리즈에서는 기본적인 측도를 위한 추상적 개념을 정의하고, 이것이 일상생활의 측도와 어떠한 연관이 있는지, 그리고 어떻게 응용이 되는지에 대해 알아보고자 한다.

Definition 1.1: Semi-Algebra;

Let XX be any nonempty set. Then we define semi-algebra CC : a collection of subset of X:CP(X)X: C \subseteq \mathcal{P}(X) such that:

(i) ,XC\emptyset, X \in C ;

(ii) {A,BC}{ABC}\{ A, B \in C \} \Rightarrow \{ A \cap B \in C \} ;

(iii) For {i, j, nN}{1i, jn}:\{i, \ j, \ n \in \mathbb{N}\} \wedge \{ 1 \leq i, \ j \leq n \}: {AC}{AC=XA=k=1nCn}\{ A \in C \} \Rightarrow \{ A^C = X \setminus A = \bigcup_{k = 1}^{n}C_{n} \} where {Ci,CjC}{Ci  Cj=}\{C_i, C_j \in C \} \wedge \{C_i \ \cap \ C_j = \emptyset \} ;

Example 1.1;

Let XX be any nonempty set and C=P(X)C = \mathcal{P}(X) ; Then CC is a semi-algebra;

Proof)

(i) ,XC=P(X)\emptyset, X \in C = \mathcal{P}(X) ;

(ii) Claim: {A,BC}{ABC}\{ A, B \in C \} \Rightarrow \{ A \cap B \in C \} ;

Proof of (ii):
If A,BCA, B \in C,
then {ABX}{ABP(X)}\{A \cap B \subseteq X\}\Rightarrow \{ A \cap B \in \mathcal{P}(X) \}
    (AB)C  \iff (A \cap B) \in C \; \blacksquare

(iii) For {i, j, nN}{1i, jn}:\{i, \ j, \ n \in \mathbb{N}\} \wedge \{ 1 \leq i, \ j \leq n \}: {AC}{AC=XA=i=1nCi}\{ A \in C \} \Rightarrow \{ A^C = X \setminus A = \bigcup_{i=1}^{n}C_{i} \} where {CiC}{Ci  Cj=}\{C_i \in C \} \wedge \{C_i \ \cap \ C_j = \emptyset \} ;

Proof of (iii):
If AP(X)=CA \in \mathcal{P}(X) = C then XAP(X)  X \setminus A \in \mathcal{P}(X) \; \blacksquare

Definition 1.2: Algebra;

Let XX be a nonempty set. Then we define algebra F\mathcal{F} : a collection of subset of X:FP(X)X: \mathcal{F} \subseteq \mathcal{P}(X) such that:

(i) ,XF\emptyset, X \in \mathcal{F} ;

(ii) {A,BF}{ABF}\{ A, B \in \mathcal{F} \} \Rightarrow \{ A \cap B \in \mathcal{F} \} ;

(iii) {AF}{AC=XAF}\{ A \in \mathcal{F} \} \Rightarrow \{ A^C = X \setminus A \in \mathcal{F} \} ;

Example 1.2;

Every algebra is semi algebra;

Proof)

Let XX be a nonempty set and FP(X)\mathcal{F} \subseteq \mathcal{P}(X) be an algebra;
Claim: F\mathcal{F} is an semi-algebra;

(i) ,XF\emptyset, X \in \mathcal{F} ;

(ii) {A,BF}{ABF}\{ A, B \in \mathcal{F} \} \Rightarrow \{ A \cap B \in \mathcal{F} \} ;

(iii)
Given: {AF}{AC=XAF}\{ A \in \mathcal{F} \} \Rightarrow \{ A^C = X \setminus A \in \mathcal{F} \} ;
Let n=1:AC=i=1nCi  where  Ci=ACFn = 1: A^C = \bigcup_{i=1}^{n}C_{i} \; where \; C_i = A^C \in \mathcal{F} ;

By (i), (ii) and (i) algebra is semi algebra \blacksquare

Example 1.3;

Let XX be a nonempty set and let GP(X)\mathcal{G} \subseteq P(X) with the following properties:

(i) ,XG\emptyset, X \in \mathcal{G} ;

(ii) {A,BG}{ABG}\{ A, B \in \mathcal{G} \} \Rightarrow \{ A \cup B \in \mathcal{G} \} (Union);

(iii) {AG}{AC=XAG}\{ A \in \mathcal{G} \} \Rightarrow \{ A^C = X \setminus A \in \mathcal{G} \} ;

Then following set G\mathcal{G} is an algebra;

Proof)

Claim: {Complement}{Intersection}    {Complement}{Union}\{ Complement \} \wedge \{ Intersection \} \iff \{ Complement \} \wedge \{ Union \} ;

(\Rightarrow part)

Let A,BGA, B \in \mathcal{G}

AC,BCG\Rightarrow A^C, B^C \in \mathcal{G} (Complement)

(ACBC)G\Rightarrow (A^C \cap B^C) \in \mathcal{G} (Intersection)

(AB)CG\Rightarrow (A \cup B)^C \in \mathcal{G}

(AB)G\Rightarrow (A \cup B) \in \mathcal{G} (Complement);

(\Leftarrow part)

A,BGA, B \in \mathcal{G}

AC,BCG\Rightarrow A^C, B^C \in \mathcal{G} (Complement)

(ACBC)G\Rightarrow (A^C \cup B^C) \in \mathcal{G} (Union)

(AB)CG\Rightarrow (A \cap B)^C \in \mathcal{G}

ABG\Rightarrow A \cap B \in \mathcal{G} (Complement);

Hence G\mathcal{G} is an algebra \blacksquare

profile
Bayesian, System engineer, Evangelist

0개의 댓글