Shaosheng Cao, Wei Lu, Qiongkai Xu: GraRep: Learning Graph Representations with Global Structural Information. CIKM 2015: 891-900
Bryan Perozzi, Vivek Kulkarni, Haochen Chen, Steven Skiena: Don't Walk, Skip!: Online Learning of Multi-scale Network Embeddings. ASONAM 2017: 258-265
Leonardo Filipe Rodrigues Ribeiro, Pedro H. P. Saverese, Daniel R. Figueiredo: struc2vec: Learning Node Representations from Structural Identity. KDD 2017: 385-394.
Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, Santhoshkumar Saminathan: subgraph2vec: Learning Distributed Representations of Rooted Sub-graphs from Large Graphs. CoRR abs/1606.08928 (2016)
Yuxiao Dong, Nitesh V. Chawla, Ananthram Swami: metapath2vec: Scalable Representation Learning for Heterogeneous Networks. KDD 2017: 135-144
Aleksandar Bojchevski, Stephan Günnemann: Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Ranking. ICLR 2018
II. Deep models
1. Recurrent GNNs
Li Y, Tarlow D, Brockschmidt M, Zemel R. 2015c. Gated graph sequence neural networks.
arXiv preprint arXiv:1511.05493
Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural Message Passing for Quantum Chemistry. In Proceedings of the 34th International Conference on Machine Learning (ICML 2017); PMLR: Sydney, NSW, Australia, 2017; Vol. 70, Proceedings of Machine Learning Research, pp. 1263–1272.
2. Graph autoencoders
Wang, D.; Cui, P.; Zhu, W. Structural Deep Network Embedding. In Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining (SIGKDD 2016); Association for Computing Machinery: New York, NY, USA, 2016; KDD ’16, p. 1225–1234. https://doi.org/10.1145/2939672.2939753.
Tu, K.; Cui, P.; Wang, X.; Wang, F.; Zhu, W. Structural Deep Embedding for Hyper-Networks. In Proceedings of the 32nd Conference on Artificial Intelligence (AAAI 2018); AAAI Press: New Orleans, Louisiana, USA, 2018; pp. 426–433.
3. Spatial CGNNs
Hamilton, W.L.; Ying, Z.; Leskovec, J. Inductive Representation Learning on Large Graphs. In Proceedings of the 30th Annual Conference on Neural Information Processing Systems (NIPS 2017); 2017; pp. 1024–1034
Chen, J.; Ma, T.; Xiao, C. FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling. In Proceedings of the 6th International Conference on Learning Representations (ICLR 2018); OpenReview.net: Vancouver, BC, Canada, 2018
Chiang, W.; Liu, X.; Si, S.; Li, Y.; Bengio, S.; Hsieh, C. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. In Proceedings of the 25th International Conference on Knowledge Discovery & Data Mining (KDD 2019); ACM: Anchorage, Alaska, USA, 2019; pp. 257–266. https://doi.org/10.1145/3292500.3330925.
Li, G.; Xiong, C.; Thabet, A.K.; Ghanem, B. DeeperGCN: All You Need to Train Deeper GCNs. CoRR 2020, abs/2006.07739 [2006.07739].
Chen, M.; Wei, Z.; Huang, Z.; Ding, B.; Li, Y. Simple and Deep Graph Convolutional Networks. In Proceedings of the 37th International Conference on Machine Learning (ICML 2020); PMLR: Virtual Event, 2020; Vol. 119, Proceedings of Machine Learning Research, pp. 1725–1735
4. Attentive GNNs
Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, Yoshua Bengio: Graph Attention Networks. CoRR abs/1710.10903 (2017)
Yang Ye, Shihao Ji: Sparse Graph Attention Networks. IEEE Trans. Knowl. Data Eng. 35(1): 905-916 (2023)
Haonan, L.; Huang, S.H.; Ye, T.; Xiuyan, G. Graph Star Net for Generalized Multi-Task Learning. arXiv e-prints 2019, p.arXiv:1906.12330, [arXiv:cs.SI/1906.12330].
Kim, D.; Oh, A. How to Find Your Friendly Neighborhood: Graph Attention Design with Self-Supervision. In Proceedings of the 9th International Conference on Learning Representations (ICLR 2021); OpenReview.net: Virtual Event, Austria, 2021
Wang, G.; Ying, R.; Huang, J.; Leskovec, J. Improving Graph Attention Networks with Large Margin-based Constraints. CoRR 2254 2019, abs/1910.11945, [1910.11945].
5. GNNs limitations and solutions
Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan, Martin Grohe: Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks. AAAI 2019: 4602-4609.
Hualei Yu, Jinliang Yuan, Yirong Yao, Chongjun Wang: Not all edges are peers: Accurate structure-aware graph pooling networks. Neural Networks 156: 58-66 (2022)
Juan Shu, Bowei Xi, Yu Li, Fan Wu, Charles A. Kamhoua, Jianzhu Ma: Understanding Dropout for Graph Neural Networks. WWW (Companion Volume) 2022: 1128-1138
6. Transformer with GNNs
Shi, Y.; Huang, Z.; Feng, S.; Zhong, H.; Wang, W.; Sun, Y. Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification. In Proceedings of the Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI 2021); Zhou, Z., Ed.; ijcai.org: Virtual Event / Montreal, Canada, 2021; pp. 1548–1554. https://doi.org/10.24963/ijcai.2021/214
Nguyen, D.Q.; Nguyen, T.D.; Phung, D. Universal Graph Transformer Self-Attention Networks. In Proceedings of the Companion Proceedings of the Web Conference 2022; Association for Computing Machinery: New York, NY, USA, 2022; WWW ’22, p. 193–196. https://doi.org/10.1145/3487553.3524258
7. Structure-aware Graph Transformer
Dexiong Chen, Leslie O'Bray, Karsten M. Borgwardt: Structure-Aware Transformer for Graph Representation Learning. ICML 2022: 3469-3489
Jinwoo Kim, Tien Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, Seunghoon Hong: Pure Transformers are Powerful Graph Learners. CoRR abs/2207.02505 (2022)
Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu: Do Transformers Really Perform Badly for Graph Representation? NeurIPS 2021: 28877-28888.
Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, Xavier Bresson:
Graph Neural Networks with Learnable Structural and Positional Representations. ICLR 2022
Md. Shamim Hussain, Mohammed J. Zaki, Dharmashankar Subramanian:
Global Self-Attention as a Replacement for Graph Convolution. KDD 2022: 655-665
Haiteng Zhao, Shuming Ma, Dongdong Zhang, Zhi-Hong Deng, Furu Wei: Are More Layers Beneficial to Graph Transformers? ICLR 2023
Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates, Philip H. S. Torr, Ser-Nam Lim: Graph Inductive Biases in Transformers without Message Passing. ICML 2023: 23321-23337
Xiaojun Ma, Qin Chen, Yi Wu, Guojie Song, Liang Wang, Bo Zheng: Rethinking Structural Encodings: Adaptive Graph Transformer for Node Classification Task. WWW 2023: 533-544
Qiheng Mao, Zemin Liu, Chenghao Liu, Jianling Sun: HINormer: Representation Learning On Heterogeneous Information Networks with Graph Transformer. WWW 2023: 599-610
Zhanghao Wu, Paras Jain, Matthew A. Wright, Azalia Mirhoseini, Joseph E. Gonzalez, Ion Stoica: Representing Long-Range Context for Graph Neural Networks with Global Attention. NeurIPS 2021: 13266-13279
Ladislav Rampásek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, Dominique Beaini: Recipe for a General, Powerful, Scalable Graph Transformer. NeurIPS 2022
Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J. Sutherland, Ali Kemal Sinop: Exphormer: Sparse Transformers for Graphs. ICML 2023: 31613-31632
Graphs illustrate intricate patterns in our perception of the world and ourselves; graph mining enhances this comprehension by highlighting overlooked details.