동빈이의 큰 수의 법칙은 다양한 수로 이루어진 배열이 있을 때 주어진 수들을 M번 더하여 가장 큰 수를 만드는 방법이다. 단, 배열의 특정한 인덱스에 해당하는 수가 연속해서 K번을 초과하여 더해질 수 없는 것이 이 법칙의 특징이다.
예를 들어 순서대로 2, 4, 5, 4, 6으로 이루어진 배열이 있을 때, M이 8이고 K가 3이라고 가정하자. 이 경우 특정한 인덱스의 수가 연속해서 세 번까지만 더해질 수 있으므로 큰 수의 법칙에 따른 결과는 6 + 6 + 6 + 5 + 6 + 6 + 6 + 5인 46이 된다.
단, 서로 다른 인덱스에 해당하는 수가 같은 경우에도 서로 다른 것으로 간주한다. 예를 들어 순서대로 3, 4, 3, 4, 3으로 이루어진 배열이 있을 때 M이 7이고 K가 2라고 가정하자. 이 경우 두 번째 원소에 해당하는 4와 네 번째 원소에 해당하는 4를 번갈아 두 번씩 더하는 것이 가능하다. 결과적으로 4 + 4 + 4 + 4 + 4 + 4 + 4 인 28이 도출된다.
배열의 크기 N, 숫자가 더해지는 횟수 M, 그리고 K가 주어질 때 동빈이의 큰 수의 법칙에 따른 결과를 출력하시오.
- 입력
- 첫째 줄에 N(2 <= N <= 1000), M(1 <= M <= 10000), K(1 <= K <= 10000)의 자연수가 주어지며 각자 연수는 공백으로 구분한다.
- 둘째 줄에 N개의 자연수가 주어진다. 각 자연수는 공백으로 구분한다. 단, 각각의 자연수는 1 이상 10000 이하의 수로 주어진다.
- 입력으로 주어지는 K는 항상 M보다 작거나 같다.
- 출력
첫째 줄에 동빈이의 큰 수의 법칙에 따라 더해진 답을 출력한다.
배열의 특정한 인덱스에 해당하는 수가 연속해서 K번을 초과하여 더해질 수 없는
가장 큰 수를 K번 더하고 두 번째로 큰 수를 한 번 더하는 연산을 반복 > 주어진 수들을 큰 순서대로 정렬한 후 두 수를 추출
n, m, k = map(int, input().split())
data = list(map(int, input().split()))
data.sort()
first = data[n - 1]
second = data[n - 2]
result = 0
while True:
for i in range(k):
if m == 0:
break
result += first
m -= 1
if m == 0:
break
result += second
m -= 1
print(result)
무한 반복문 내에서 반복문 탈출 조건을 어느 곳에 적절히 배치해야 할지 로직을 체계적으로 구성한다